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Figure 1: Overview of LFS-Bench. We propose LFS-Bench, a comprehensive benchmark designed to evaluate the
performance of long-form speech generation models. Left: We construct test sets across 17 downstream speech
scenarios, grounded in three core challenges of long-form generation: Acoustics, Semantics, and Expressiveness.
Center: Along these three challenge axes, we propose seven disentangled metrics to comprehensively assess model
performance and validate them through human alignment studies. Right: Extensive experiments show that existing
models still have substantial room for improvement in reverb consistency, prosodic coherence, and expressiveness.

Abstract

Recent advances in speech generation have en-001
abled high-fidelity synthesis, yet systematic002
evaluation of models under long-context con-003
ditions remains largely underexplored. A com-004
prehensive evaluation benchmark for long-form005
speech is indispensable for two reasons: 1) ex-006
isting test scenarios are often confined to lim-007
ited domains, creating a significant gap with the008
diverse downstream applications; 2) existing009
metrics overlook critical long-text factors such010
as consistency and coherence, failing to gen-011
eralize reliably. To this end, we propose LFS-012
Bench, a comprehensive benchmark that de-013
composes “long-form speech quality” into spe-014
cific, disentangled dimensions. LFS-Bench has015
three key properties. 1) Rich speech scenarios:016
Focusing on long-form speech generation and017
dialog generation, LFS-Bench covers acoustics,018
semantics, and expressiveness challenges, and019
consists of 1,101 samples spanning 17 common020
speech scenarios; 2) Comprehensive evalua-021
tion dimensions: Along the acoustics, seman-022
tics, and expressiveness axes, LFS-Bench de-023

fines an automated evaluation protocol with 024
seven metrics to provide a comprehensive, ac- 025
curate, and standardized assessment; 3) Valu- 026
able Insights: Through extensive experiments, 027
we reveal that current models still struggle in 028
highly expressive scenarios and exhibit a no- 029
table gap in consistency and hierarchy com- 030
pared to real recordings. The project page can 031
be found at https://lfs-bench.github.io. 032

1 Introduction 033

Recent advances in generative modeling have 034

revolutionized content creation across modali- 035

ties (OpenAI, 2024; Esser et al., 2024; Guo et al., 036

2025). While Large Language Models (LLMs) 037

have demonstrated impressive capabilities in long- 038

context generation and understanding (Chen et al., 039

2023; Xiao et al., 2023; Bai et al., 2024), the 040

speech community is similarly shifting focus from 041

sentence-level to paragraph-level synthesis (Le 042

et al., 2023; Shen et al., 2024). Compared to tra- 043

ditional concatenation strategies, end-to-end long- 044

form TTS paradigms promise superior acoustic and 045
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semantic consistency, leveraging broader contex-046

tual cues (Peng et al., 2025; Park et al., 2024).047

Despite these advancements, the systematic eval-048

uation of long-form speech remains a significant049

challenge. While downstream applications involve050

complex multi-speaker interactions and rich se-051

mantic contexts, existing test scenarios are often052

confined to limited domains or single-speaker set-053

tings (Koizumi et al., 2023; Zhang et al., 2022).054

This discrepancy prevents a thorough assessment055

of how models handle the rich challenges inherent056

in long-form generation, leaving their capabilities057

in complex scenarios largely underexplored.058

Furthermore, establishing an effective evalua-059

tion protocol that is both scalable and accurate is060

equally difficult. Existing sentence-level metrics061

like Word Error Rate (WER)(Ali and Renals, 2018)062

have become saturated (Chen et al., 2024b) and063

correlate poorly with human perception in long-064

text contexts (Minixhofer et al., 2025). Although065

human listening tests are the gold standard, they066

are non-scalable and costly. Recently, MLLM-067

based evaluators have emerged (Chen et al., 2024a;068

Manku et al., 2025), yet they typically provide069

coarse-grained comparative judgments rather than070

quantitative metrics, often overlooking the property071

of consistency (Li et al., 2024). Consequently, the072

field lacks an automated protocol aligned with the073

fine-grained nuances of long-form generation.074

To this end, we propose LFS-Bench, a compre-075

hensive benchmark for long-form TTS models with076

three core properties: 1) rich scenarios, 2) compre-077

hensive evaluation, and 3) valuable insights.078

First, LFS-Bench is defined over two fundamen-079

tal long-form TTS paradigms: long-form speech080

generation and dialog generation. Starting from081

three core dimensions of long-form speech, namely082

acoustics, semantics, and expressiveness, LFS-083

Bench constructs 1,101 test samples spanning 17084

downstream scenarios, providing broad coverage085

of long-form TTS applications.086

Second, our framework establishes an automatic087

evaluation protocol that employs a hierarchical ap-088

proach to decomposing “long-form speech quality”.089

Transcending the traditional focus on Fidelity and090

Accuracy, we introduce novel dimensions tailored091

for long-form characteristics, specifically Acous-092

tic Consistency, Prosodic Coherence, and Expres-093

sive Hierarchy. These metrics effectively address094

the limitations of existing protocols by quantifying095

temporal stability and expressive dynamics. More-096

over, we conduct user studies to validate the reli-097

Table 1: Comparison of speech generation benchmarks
and test datasets. Pipe. indicates availability of an
automatic evaluation pipeline, and ✓✗ marks that only
part of the metrics are objectively computable. * denotes
non-public data, with results estimated from the paper.

Benchmark Clips Scenario Spk-Num Avg-Word Pipe Dim.

SeedTTS-Eval 6612 1 1 19.57 ✓✗ 3
EmergentTTS-Eval 1645 6 1 33.93 ✓ 5
TTSDS2 60 4 1 24.24 ✓ 4
Choice of Voices 1 1 1 988 ✗ 5
MinutesSpeech-test 1221 1 1 134 ✓✗ 6
LibriSpeech-long 960 1 1 534.5 ✓✗ 6
NeuralTTS-eval 250 1 1 260* ✗ 9
MultiDialog 831 3 2 319.8 ✓✗ 4

LFS-Bench 1101 17 1-4 228.6 ✓ 7

ability of these automated metrics, ensuring they 098

serve as a scalable proxy for human perception. 099

Finally, through extensive experiments on LFS- 100

Bench, we derive critical insights detailed in Sec- 101

tion 5. Our empirical results reveal that while cur- 102

rent models rival human recordings in fidelity and 103

accuracy, they exhibit substantial gaps in reverb 104

consistency, prosodic coherence, and expressive 105

hierarchy. Notably, performance deteriorates in 106

highly expressive scenarios, underscoring the per- 107

sisting challenges in modeling long-term dependen- 108

cies and dynamic stylistic variations. 109

We’re open-sourcing LFS-Bench, including test 110

samples, and evaluation scripts with prompts. We’ll 111

also include more models in LFS-Bench to drive 112

forward the field of long-form speech generation. 113

2 Related Work 114

Long-form TTS Generating long-form speech 115

and dialogues presents significant challenges in 116

maintaining prosodic coherence, modeling long 117

sequences, and managing speaker transitions. To 118

ensure prosodic consistency, recent studies have 119

explored joint style modeling and cross-sentence 120

memory mechanisms (Guo et al., 2024a; Li et al., 121

2025). Concurrently, to enhance long-sequence 122

modeling efficiency, researchers have introduced 123

compact representations via multi-resolution quan- 124

tization (Nishimura et al., 2024) or low frame- 125

rate tokenization (Peng et al., 2025), as well as 126

state space models to alleviate memory bottle- 127

necks (Park et al., 2024). Regarding speaker tran- 128

sitions, while early works combined autoregres- 129

sive (AR) and non-autoregressive (NAR) compo- 130

nents (Borsos et al., 2023), recent advancements 131

have further developed both paradigms: NAR ap- 132

proaches increasingly employ flow-matching tech- 133

niques, whereas AR models leverage speaker to- 134

kens to handle long-context dialogues (Ju et al., 135
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2025; Xie et al., 2025a). Despite these techni-136

cal strides, existing metrics remain insufficient for137

evaluating prosodic coherence, emotional richness,138

and transition quality. To bridge this gap, LFS-139

Bench introduces a unified evaluation framework140

with targeted test cases and human-aligned metrics141

designed to quantify these critical properties.142

Evaluation for Speech Generation Models Cur-143

rent TTS evaluation mainly relies on four objec-144

tive metric families: signal-based metrics (Taal145

et al., 2010), MOS prediction networks (Saeki146

et al., 2022), distributional metrics (Minixhofer147

et al., 2024), and accuracy metrics (Ali and148

Renals, 2018). These metrics are nearly satu-149

rated for recent state-of-the-art systems (Ju et al.,150

2024). Follow-up benchmarks (Huang et al., 2025;151

Anastassiou et al., 2024) increase difficulty via152

harder texts or controllability, but remain sentence153

level and are not directly suitable for long-form154

speech (Clark et al., 2019). Long text test sets155

like MinutesSpeech- (Nishimura et al., 2024) and156

LibriSpeech-Long (Park et al., 2024) partially ad-157

dress this gap, yet cover only a narrow range of sce-158

narios, as shown in Table 1. Benchmarks for dialog159

models also face similar issues (Ao et al., 2024).160

Moreover, existing protocols rely heavily on subjec-161

tive evaluations (Cambre et al., 2020; Zhang et al.,162

2023), which do not scale and lack standardized163

procedures. In contrast, LFS-Bench jointly covers164

long-form speech and dialog generation, spans 17165

scenarios, and provides comprehensive automatic166

metrics aligned with humans, thereby addressing167

key limitations of current evaluation practices.168

3 LFS-Bench169

3.1 Overview170

Long-form speech generation requires multi-171

dimensional evaluation to ensure immersion and172

realism. For instance, in an online education sce-173

nario, a generated lecture must not only preserve174

timbre and acoustic environment (acoustics) but175

also deliver accurate content with natural pacing176

(semantics), while exhibiting dynamic variations177

to sustain engagement (expressiveness). Motivated178

by these requirements, we propose LFS-Bench, a179

hierarchical benchmark comprising 1,101 samples180

across 17 downstream applications. And as de-181

tailed in Section 3.4, our evaluation protocol is182

organized around three primary dimensions:183

Acoustics Challenge focuses on sound quality,184

environmental fidelity, and speaker identity. Hence,185

we carefully curate samples from six relevant sce- 186

narios: customer service, podcast, chat, debate, 187

audiobook, and interview, and evaluate acoustic 188

performance based on timbre consistency, reverb 189

consistency, and sound fidelity. 190

Semantics Challenge targets correctness and 191

fluency to probe the upper limits of semantic mod- 192

eling. We derive complex test cases from five 193

information-dense scenarios (lesson, popular sci- 194

ence, presentation, seminar, and news), evaluating 195

them by content accuracy and prosodic coherence. 196

Expressiveness Challenge addresses the issues 197

of flat emotion and low engagement in long-form 198

speech. We incorporate highly expressive scenar- 199

ios such as drama, talk show, hosting, speech, live 200

streaming, and sportscast. Performance is assessed 201

through expressive richness (sentence-level emo- 202

tional impact) and expressive hierarchy (paragraph- 203

level expressive dynamics). 204

3.2 Data Collection 205

To provide a high-quality benchmark, we curate 206

the test samples from three sources: online text 207

corpora, online audio media, and LLM generation. 208

Online Text Corpora For scenarios such as au- 209

diobooks, drama, and news, where abundant tran- 210

scripts are available online, we directly construct 211

test sets from the web. After crawling the raw 212

data, we clean irrelevant content such as illegal 213

characters, and normalize the text into a clear and 214

readable format. We then employ human annota- 215

tors to proofread the transcripts and add speaker 216

labels, yielding the final curated test samples. 217

Online Audio Media This source constitutes 218

the main component of LFS-Bench. For web au- 219

dio data, after crawling, we first denoise the raw 220

audio (Wang and Tian, 2025), and then use DNS- 221

MOS (Reddy et al., 2021) scores to filter out low- 222

quality cases. After that, speaker diarization is 223

conducted (Zheng et al., 2023) to obtain audio 224

segments for each speaker. Finally, we use Sen- 225

seVoice (An et al., 2024) to transcribe audio clips. 226

Upon completion of the script processing, we per- 227

form manual verification to correct errors from the 228

previous steps and curate the final test samples. 229

LLM generation We use GPT-5 (OpenAI, 2025) 230

to augment our test set and increase the diversity of 231

data sources. Specifically, we first design prompts 232

that include scenario, topic, and task information. 233

Then we use them to guide the LLM to generate 234

high-quality test cases. All generated samples are 235

then checked and verified by human annotators. 236
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Figure 2: Overview of dataset construction and refinement. The process consists of four stages: 1) Formulating
LFS-Bench based on three core challenges; 2) Selecting 17 downstream speech scenarios aligned with these
challenges; 3) Designing a hybrid data collection pipeline; 4) Performing data refinement on the constructed dataset.

3.3 Data Refinement237

To ensure the quality of curated samples, we imple-238

ment a rigorous refinement pipeline. The process239

begins with semantic de-duplication, where we em-240

ploy GPT-5 to extract topics, keywords, and sum-241

maries for each sample. These fields are concate-242

nated and encoded using SentenceBERT (Reimers243

and Gurevych, 2019) to identify and remove highly244

similar instances based on cosine similarity. Subse-245

quently, we filter for content quality by leveraging246

GPT-5 to evaluate expression clarity and content247

coherence, discarding any samples that fall below248

predefined thresholds. To address privacy and ethi-249

cal concerns, we utilize DeepSeek V3.2 (Liu et al.,250

2024a) with a chain-of-thought (Wei et al., 2022)251

procedure to detect potential leaks, revise sensitive252

content, and eliminate samples posing social or eth-253

ical risks. Finally, we conduct a manual review to254

purge remaining low-quality samples and replen-255

ish the dataset, ultimately yielding 1,101 samples256

that cover three core challenges and span 17 down-257

stream scenarios, as shown in the left side of Fig. 1.258

3.4 Evaluation Metrics259

We disentangle the challenges into seven objective260

metrics to comprehensively assess the performance261

of TTS models. More details in Appendix C.262

Timbre Consistency. Compared with prior263

work that evaluates zero-shot capability using264

speaker similarity, we directly measure within-265

utterance timbre consistency to assess a model’s266

ability to maintain or switch speaker identity. For267

single-speaker long-form speech w, we apply a 268

sliding window over the waveform and extract a 269

speaker embedding for each window, yielding a se- 270

quence {ei}ni=1, where n is the number of windows. 271

We then compute the cosine similarity for every 272

pair of distinct embeddings and take the average of 273

the resulting similarity sequence {simi,j}ni,j=1,i̸=j 274

as the measure of timbre consistency. For dialog, 275

we first use forced alignment (McAuliffe et al., 276

2017) to obtain segments of each speaker. The fi- 277

nal metric is obtained by averaging the consistency 278

scores of individual speakers. 279

Reverb Consistency. We assess whether syn- 280

thesized audio maintains a stable acoustic environ- 281

ment by measuring the consistency of reverbera- 282

tion over time. For a generated utterance w, we 283

apply a sliding window over the waveform and 284

compute the speech-to-reverberation modulation 285

energy ratio (SRMR) for each window, obtaining 286

a sequence of reverberation scores {ri}ni=1. We 287

then compute the standard deviation of this se- 288

quence, which serves as our reverb consistency 289

metric; lower variance indicates a more consistent 290

reverberation pattern across the utterance. 291

Sound Fidelity. We evaluate the perceptual qual- 292

ity and clarity of the generated speech using the 293

Perceptual Evaluation of Speech Quality (PESQ) 294

metric. Given that standard PESQ requires a refer- 295

ence signal unavailable in our setting, we employ 296

SQUIM-PESQ to perform non-intrusive, reference- 297

free evaluation for the synthesized audio. 298

Content Accuracy. Faithful content rendering 299
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is a cornerstone of robust TTS systems. To inves-300

tigate the impact of long-sequence modeling on301

content fidelity, we employ an ASR-based evalu-302

ation, calculating the Word Error Rate (Character303

Error Rate for Chinese) between the transcripts of304

the synthesized audio and the ground truth text.305

Prosodic Coherence. While content accuracy306

ensures lexical correctness, prosodic coherence307

evaluates the naturalness of delivery. This met-308

ric focuses on pauses, speaking rate, and the con-309

sistency of overall prosody to capture the natu-310

ralness of generated speech. LFS-Bench lever-311

ages SpeechJudge (Zhang et al., 2025b), a scor-312

ing model fine-tuned from Qwen2.5-Omni-7B (Xu313

et al., 2025a). We refine the input prompt to314

strengthen the model’s sensitivity to prosodic con-315

sistency in long-form contexts, utilizing the result-316

ing scalar score (1–5) as our metric for coherence.317

Expressive Richness. In long-form synthesis,318

expressiveness becomes crucial, as monotonous de-319

livery fails to sustain user engagement or support320

immersive experiences. To address this need, LFS-321

Bench evaluates expressive richness along three322

dimensions: emotional resonance, character por-323

trayal, and storytelling. Following EmergentTTS-324

Eval (Manku et al., 2025), we employ LALMs as325

evaluators using a comprehensive prompt to score326

audio on a 1–5 scale. To ensure fine-grained assess-327

ment, we segment inputs into 10-second intervals328

and calculate the average score across all segments.329

Expressive Hierarchy. Beyond sentence-level330

expressiveness, paragraph-level expressive hierar-331

chy is a defining characteristic of long-form speech.332

We employ LALMs to evaluate this attribute on333

a scale of 1 to 5, designing prompts that specifi-334

cally target emotional variation, vocal dynamics,335

and scene appropriateness. Crucially, we evaluate336

the full utterance rather than via segmentation to337

preserve the integrity of the narrative flow.338

3.5 Human Perception Alignment Test339

To further validate the effectiveness of our evalua-340

tion protocol, we conduct a subjective assessment341

in which human raters score a randomly selected342

subset of the test data. Additional implementation343

details and results are provided in the Appendix D.344

Prosody Evaluation. We randomly sample 50345

pairs of audio clips, each synthesized from identical346

text by different models, and conduct a subjective347

preference test with 10 human evaluators. For each348

pair (A,B), raters assess the comparative prosodic349

coherence on a 5-point scale ranging from -2 to 2.350

The human preference score is defined as: 351

Spref(A,B) =
1

N

N∑
i=1

si, (1) 352

where si denotes the score assigned by the i-th 353

rater, and N represents the total number of raters. 354

We compute the Spearman Rank Correlation Coef- 355

ficient (SRCC) between human preference scores 356

and the differential of our metric. The SRCC of 357

0.82 shows that our metric effectively captures the 358

perceived prosodic coherence of long-form speech. 359

Expressiveness Evaluation. We randomly sam- 360

ple 200 audio clips across all models and tasks, 361

recruiting 10 human evaluators to score each sam- 362

ple, strictly adhering to the same expressiveness 363

prompts used for the LALM evaluation. In parallel, 364

we benchmark three MOS prediction networks and 365

six LALMs by computing the correlation between 366

their predicted scores and the human Mean Opin- 367

ion Scores (MOS). Finally, we select Gemini3-Pro 368

as our primary evaluator, due to its highest align- 369

ment with human judgment, yielding SRCC scores 370

of 0.71 for expressive richness and 0.62 for expres- 371

sive hierarchy. We also validate the stability of 372

Gemini 3 Pro through independent repeated trials. 373

More results are detailed in Appendix D.4. 374

4 Experiments 375

4.1 Settings 376

Model Evaluated For single-speaker long- 377

form speech, we evaluate ten open-source mod- 378

els: ZipVoice (Zhu et al., 2025b), Spark- 379

TTS (Wang et al., 2025), CosyVoice2-0.5B (Du 380

et al., 2024), CosyVoice3-0.5B (Du et al., 2025), 381

GLM-TTS (Cui et al., 2025), MegaTTS3 (Jiang 382

et al., 2025), IndexTTS2 (Zhou et al., 2025b), 383

FishSpeech-1.5 (Liao et al., 2024), F5TTS (Chen 384

et al., 2024c), and VibeVoice (Peng et al., 2025). 385

And we evaluate six closed-source flagship sys- 386

tems: Gemini-2.5-pro-preview-tts, OpenAI-tts- 387

1-hd, ElevenLabs Multilingual V2, Minimax- 388

speech-02-hd (Zhang et al., 2025a), InWorld- 389

TTS-1-max (Atamanenko et al., 2025), and Seed- 390

TTS2 (Anastassiou et al., 2024). In the dia- 391

logue generation setting, we select six open-source 392

models capable of long-form synthesis—ZipVoice- 393

Dialog (Zhu et al., 2025a), MoonCast (Ju et al., 394

2025), MOSS-TTSD (Zhao et al., 2025), Fir- 395

eRedTTS2 (Xie et al., 2025b), VibeVoice, and 396

SoulX-Podcast (Xie et al., 2025a)—and compare 397
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Table 2: Evaluation results of long-form TTS models across multi-dimensional metrics. Metrics cover Acoustics
(Timbre/Reverb Consistency, Fidelity), Semantics (Content Accuracy, Prosodic Coherence), and Expressiveness
(Richness, Hierarchy). CER and WER apply to Chinese and English, respectively. Closed-source models and
open-source models is separately marked, with the best results in bold and the second best underlined.

Acoustics Semantics Expressiveness
Model Timbre(↑) Reverb(↓) Sound Fidelity(↑) CER/WER(↓) Prosody(↑) Richness(↑) Hierarchy(↑)

Open-Source Models

CosyVoice-2 0.92±0.018 2.35±0.78 3.80±0.27 0.032 / 0.168 3.23±1.01 3.02±0.68 2.76±0.88
CosyVoice-3 0.94±0.008 2.26±0.59 3.83±0.10 0.034 / 0.141 3.31±0.71 2.80±0.70 2.45±0.75
FishSpeech 0.93±0.014 1.79±0.65 4.10±0.09 0.043 / 0.113 3.80±0.86 2.66±0.78 2.90±0.74

F5TTS 0.90±0.022 1.82±0.77 3.39±0.33 0.072 / 0.113 3.41±0.99 3.07±0.63 2.77±0.84
GLM-TTS 0.94±0.010 1.62±0.61 3.95±0.13 0.035 / 0.118 3.64±0.87 2.68±0.71 2.54±0.88

IndexTTS-2 0.94±0.008 1.72±0.53 2.77±0.41 0.033 / 0.135 3.64±0.52 3.59±0.72 2.96±0.81
MegaTTS-3 0.93±0.008 1.81±0.45 3.55±0.19 0.035 / 0.108 3.61±0.84 2.81±0.55 2.53±0.63
SparkTTS 0.93±0.033 1.79±1.70 3.59±0.40 0.329 / 0.240 2.58±1.24 3.47±0.58 2.38±0.83
VibeVoice 0.93±0.024 2.15±0.88 3.82±0.42 0.047 / 0.111 3.90±0.79 3.71±0.58 3.34±0.88
ZipVoice 0.90±0.011 2.06±1.08 3.51±0.19 0.072 / 0.396 3.19±1.11 2.44±0.85 2.11±1.05
Average 0.93 1.95 3.63 0.073 / 0.164 3.43 3.03 2.67

Closed-Source models

Elevenlabs Multilingual V2 0.96±0.008 3.05±0.59 4.02±0.11 0.100 / 0.115 3.50±0.73 2.33±0.74 2.68±0.81
Gemini-2.5-pro-preview-tts 0.91±0.018 1.44±0.50 3.16±0.36 0.058 / 0.169 3.91±0.72 4.14±0.65 3.51±0.84

Inworld-TTS-1-max 0.93±0.025 2.19±0.64 3.73±0.17 0.053 / 0.113 3.71±0.51 3.68±0.86 3.03±0.92
Minimax-Speech-02-hd 0.93±0.010 1.38±0.35 3.82±0.09 0.032 / 0.119 3.95±0.73 3.80±0.44 3.26±0.79

OpenAI-tts-01-hd 0.92±0.011 1.74±0.42 2.68±0.12 0.043 / 0.119 3.91±0.52 3.46±0.62 3.25±0.81
SeedTTS-2 0.94±0.022 1.95±0.74 3.88±0.18 0.106 / 0.193 3.74±0.44 3.10±0.80 2.34±0.65

Average 0.93 1.96 3.55 0.065 / 0.138 3.79 3.42 3.01

Real Speech 0.96 1.91 3.62 0.070 / 0.074 4.04 4.35 3.94

them with four closed-source baselines: Gemini-398

2.5-pro-preview-tts, OpenAI-tts-1-hd, ElevenLabs399

Multilingual V2, and SeedTTS-Podcast.400

Evaluation Models For the timbre consistency401

evaluation, we use WavLM TDCNN1 to extract402

speaker embeddings, and perform forced align-403

ment with Paraformer2 on Chinese data and Whis-404

perX (Bain et al., 2023) on English data. For WER405

computation, we adopt FunASR Nano3 as the tran-406

scription model. For all expressiveness-related407

metrics, we use Gemini3-pro (Google DeepMind,408

2025) with prompt enhancement as the evaluator.409

4.2 Evaluation from Different Perspectives410

Per-Dimension Evaluation We demonstrate LFS-411

Bench scores across all dimensions following the412

evaluation protocol outlined in Section 3.4, with413

results summarized in Tables 2 and 3. Addition-414

ally, we incorporate two reference baselines: Real415

Speech and Real Dialogue, which are derived from416

the source dataset in Section 3.2, serving as the417

topological upper bound for audio quality.418

Per-Scenario Evaluation We evaluate the long-419

form speech and dialog generation models across420

1https://github.com/microsoft/UniSpeech/tree/
main/downstreams/speaker_verification

2https://modelscope.cn/models/iic/speech_
timestamp_prediction-v1-16k-offline

3https://huggingface.co/FunAudioLLM/
Fun-ASR-Nano-2512

three core categories spanning 17 different scenar- 421

ios, and then calculate their performance via the 422

evaluation protocol. Fig. 3 visualizes the evaluation 423

results of each model in terms of three categories. 424

Evaluations On Generated Length We evalu- 425

ate five representative models (MegaTTS3, F5TTS, 426

Cosyvoice2, SparkTTS, and VibeVoice) across in- 427

creasing input lengths among 100 samples in three 428

core scenarios (Acoustics, Semantics, and Expres- 429

siveness). The results are shown in Fig 4. 430

5 Insights and Discussions 431

5.1 Observations 432

Gap to Ground-Truth Audio As shown in Ta- 433

bles 2 and 3, among the evaluated systems, 434

VibeVoice and SoulX-Podcast emerge as the 435

strongest open-source models, while Minimax- 436

Speech-02-hd and Gemini-2.5-pro-preview-tts 437

lead their proprietary counterparts. We also ob- 438

serve that, although SOTA open-source models al- 439

ready match or even surpass the best proprietary 440

systems on several evaluation dimensions, Propri- 441

etary models still exhibit consistently stronger over- 442

all performance than open-source models for long- 443

form speech generation. However, benchmarking 444

against real recordings reveals persistent and sys- 445

tematic gaps. For long-form synthesized speech, 446

even the best-performing models remain below hu- 447

man speech in overall expressiveness: the closed- 448
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Table 3: Results of dialogue generation models across LFS-Bench’s metrics. The performance of closed-source
models and open-source models is separately marked, with the best results in bold and the second best underlined.

Acoustics Semantics Expressiveness
Model Timbre(↑) Reverb(↓) Sound Fidelity(↑) CER/WER(↓) Prosody(↑) Richness(↑) Hierarchy(↑)

Open-Source Models

FireRedTTS-2 0.93±0.017 3.48±1.06 2.62±0.69 0.075 / 0.131 3.24±1.04 2.72±0.75 2.81±0.97
MoonCast 0.90±0.022 3.06±1.84 2.62±0.37 0.313 / 0.125 3.16±1.18 2.68±0.68 2.70±0.99

MOSS-TTSD 0.91±0.028 3.55±1.16 2.89±0.55 0.148 / 0.239 2.79±1.14 3.21±0.79 2.99±1.06
SoulX-Podcast 0.93±0.016 3.51±0.80 3.96±0.09 0.061 / 0.090 4.01±0.78 3.44±0.69 3.71±0.81

VibeVoice 0.91±0.028 3.59±0.85 3.35±0.72 0.106 / 0.125 3.57±1.05 3.76±0.63 3.37±0.83
ZipVoice-Dialog 0.91±0.021 3.53±0.85 2.66±0.24 0.069 / 0.114 3.67±0.89 2.62±0.60 2.80±0.88

Average 0.92 3.45 3.02 0.129 / 0.137 3.41 3.07 3.06

Closed-Source models

Elevenlabs Multilingual V2 0.93±0.016 4.43±1.01 3.48±0.44 0.127 / 0.109 3.67±0.78 2.84±0.79 3.46±0.87
Gemini-2.5-pro-preview-tts 0.92±0.017 3.17±0.68 3.01±0.24 0.086 / 0.092 4.06±0.39 4.06±0.48 4.02±0.68

OpenAI-tts-1-hd 0.93±0.013 2.98±0.63 2.28±0.17 0.104 / 0.103 3.69±0.62 3.29±0.75 3.70±0.88
SeedTTS-Podcast 0.91±0.017 2.85±0.78 3.89±0.17 0.063 / 0.108 3.93±0.46 3.84±0.72 3.84±0.88

Average 0.92 3.36 3.17 0.095 / 0.103 3.83 3.51 3.76

Real Dialogue 0.95 2.73 2.94 0.050 / 0.137 3.95 4.42 4.17

source average lags behind real speech by nearly449

one MOS point in richness and over half a point450

in hierarchy. A similar pattern holds in dialog sce-451

narios, where closed-source systems obtain higher452

expressiveness, but still fall short of the natural ex-453

pressivity implied by real dialogue. In acoustic met-454

rics, synthesized speech approaches real recordings455

in Fidelity, but long-form outputs show a deficit in456

Timbre Consistency. For dialog generation, the457

marked gap in Reverb Consistency (3.36 vs. 2.73)458

underscores a core challenge: sustaining global459

acoustic consistency across multiple speakers. In460

terms of Semantics, current models achieve Con-461

tent Accuracy comparable to real speech, demon-462

strating strong capability in pronunciation. Never-463

theless, deficiencies in prosodic coherence persist,464

limiting the naturalness of the synthesized audio.465

Impact of Scenarios. As illustrated in Fig-466

ure 3, downstream scenarios significantly impact467

generation performance. Acoustic challenge sce-468

narios present distinct difficulties, particularly in469

maintaining acoustic field consistency. This strug-470

gle likely stems from frequent speaker transitions471

that disrupt reverberation unity, also causing mi-472

nor fidelity degradation. Notably, however, tim-473

bre consistency remains stable, demonstrating the474

robustness of current models in this dimension.475

For semantic-dominated scenarios, linguistic com-476

plexity in semantic-dominated scenarios does not477

compromise content accuracy, thanks to robust478

text normalization. However, it poses substantial479

challenges to prosody modeling, indicating a need480

for improved comprehension of intricate syntactic481

structures. An intriguing finding emerges in expres-482

siveness settings. Here, all models exhibit perfor-483

mance degradation across nearly all metrics, partic- 484

ularly in Expressive Richness. Theoretically, these 485

scenarios should represent a higher upper bound 486

for expressiveness. Consequently, this counter- 487

intuitive performance suggests that models may 488

lack effective training on expressive data. Further- 489

more, it highlights the substantial gap remaining 490

in achieving immersive and expressive generation. 491

More data support, experimental results, and de- 492

tailed analysis can be found in Appendix G.2. 493

5.2 Discussions 494

AR v.s. NAR In long-form TTS, the choice be- 495

tween AR and NAR paradigms centers on the trade- 496

off between expressiveness and robustness. NAR 497

models, leveraging parallel generation mechanisms, 498

demonstrate superior robustness and efficiency in 499

long-text synthesis (Ren et al., 2020). However, 500

they tend to produce over-smoothed rhythms, of- 501

ten failing to capture the vocal dynamics and emo- 502

tional nuances required for extended narration. As 503

observed in Table 2 and 3, F5TTS, despite being 504

the top-performing NAR model, lags significantly 505

behind most AR counterparts in expressive hier- 506

archy. Similarly, ZipVoice-Dialog ranks among 507

the lowest in expressiveness within the dialogue 508

category. Conversely, AR models, typically built 509

upon language model backbones, excel in prosody 510

modeling but suffer from error propagation in long- 511

form scenarios. While they achieve superior ex- 512

pressiveness, they exhibit a lower bound on Con- 513

tent Accuracy; for instance, both SparkTTS and 514

MoonCast show suboptimal performance in this 515

dimension. Furthermore, as illustrated in Figure 4, 516

SparkTTS suffers from a substantial decline in con- 517
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Openai-tts-1-hd Elevenlabs Multilingual V2 Gemini-2.5-pro-preview-tts VibeVoice

Figure 3: LFS-Bench Results across Three Core Challenges. For each chart, we plot the evaluation results across
three core challenges. The results are normalized between 1 and 5 (larger is better) for visibility across challenges.

Reverb Consistency Sound Fidelity

Content Accuracy Prosodic Coherence Expressive Hierarchy

Timbre Consistency

Figure 4: Results on Sequence Length. The horizontal
axis represents the number of sentences in the text.

tent accuracy as sequence length increases, whereas518

NAR models maintain stability without significant519

degradation. Consequently, we propose that future520

long-form TTS architectures should evolve beyond521

this binary choice toward a Coarse-to-Fine Archi-522

tecture (Kharitonov et al., 2023; Ju et al., 2024),523

thereby effectively reconciling long-range semantic524

coherence with local generation stability.525

Data Quality v.s. Data Quantity While scaling526

laws have advanced speech synthesis by leveraging527

more data and bigger parameters (Du et al., 2025),528

our analysis suggests that relying solely on main-529

stream datasets presents three critical impediments530

to long-form audio generation: 1) Fragmentation531

in open-source data (Chen et al., 2021) induces a532

short-form bias that compromises discourse coher-533

ence. For instance, SparkTTS is trained on VoxBox,534

a dataset characterized by an average segment du-535

ration of less than 10 seconds. Consequently, the536

model exhibits significant degradation in both con-537

tent accuracy and prosodic coherence as the gen-538

eration length extends, as illustrated in Figure 4;539

2) Acoustic instability in web-crawled data (He540

et al., 2024), such as variable noise and recording541

conditions, triggers acoustic drift. For example,542

CosyVoice3 utilizes extensive in-the-wild data for 543

training. As a result, it significantly lags behind 544

other models in reverb consistency, as shown in 545

Table 2; and 3) The averaging effect of scaling 546

enhances generalization but homogenizes expres- 547

siveness. As shown in Table 2, flagship models 548

such as GLM-TTS and FishSpeech excel in acous- 549

tic metrics. However, they underperform in the 550

expressiveness dimension despite their large scale. 551

Consequently, they fail to capture the dynamic nu- 552

ances required for narration. Therefore, the path 553

forward requires a strategic shift towards priori- 554

tizing data quality and temporal continuity over 555

raw quantity. We advocate for the adoption of 556

curriculum-learning strategies (Wang et al., 2021) 557

that progressively transition from sentence-level 558

to paragraph-level training. By leveraging high- 559

fidelity, long-context recordings, future models can 560

more effectively capture the long-range dependen- 561

cies essential for coherent and expressive narration. 562

6 Conclusion 563

In this work, we present LFS-Bench, a holis- 564

tic benchmark tailored for evaluating long-form 565

TTS models. LFS-Bench addresses three core 566

challenges in long-form generation, encompass- 567

ing 1,101 carefully curated instances across 17 568

downstream scenarios. To facilitate precise and 569

automatic assessment, we propose a disentangled, 570

human-aligned evaluation protocol featuring seven 571

complementary metric dimensions. Through exten- 572

sive benchmarking of over 20 models, we provide 573

an in-depth analysis of current capabilities and limi- 574

tations from the perspectives of model architectures 575

as well as training data and strategy. We envision 576

LFS-Bench as a standardized testbed for future re- 577

search, propelling the development of more robust 578

and immersive long-form speech synthesis. 579
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Limitations580

We identify three limitations in this work. First,581

the linguistic scope of LFS-Bench is currently582

restricted to Chinese and English, leaving low-583

resource languages and diverse dialects or accents584

underexplored. Second, our investigation into se-585

mantics remains preliminary; while LFS-Bench’s586

evaluation metrics prioritize acoustic coherence,587

we lack a robust automated framework to assess588

emotional and stylistic transitions grounded in deep589

semantic understanding of long-form text. Finally,590

the prompt speech utilized in our experiments is591

derived from only 20 speakers from open-source592

datasets. This limited speaker diversity may in-593

troduce evaluation bias, and we encourage the re-594

search community to contribute additional data595

to facilitate a more comprehensive assessment of596

model generalization.597

Ethical considerations598

Although this work itself raises no immediate ethi-599

cal concerns, two potential risks must be addressed600

when applying our benchmark. First, when utiliz-601

ing our benchmark for evaluation, users must en-602

sure that the prompt speech does not infringe upon603

the rights of the original voice actors. The use of604

audio from unverified sources or those restricted by605

regulations is strictly prohibited. Second, while our606

objective is to enhance the holistic performance of607

long-form synthesis, practitioners must ensure that608

models trained or evaluated using our methods are609

not deployed for generating disinformation, such610

as fabricated news reports or unauthorized politi-611

cal speeches. To mitigate these risks, we intend612

to implement strict usage guidelines upon open-613

sourcing the benchmark to prevent unethical and614

unauthorized applications.615
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Appendix Contents1018

The Appendix is structured as follows:1019

• Section A: Details of dataset construction,1020

including the detailed explanation of scenar-1021

ios as well as the complete process of data1022

collection and refinement.1023

• Section B: Statistics of LFS-Bench.1024

• Section C: Details of Evaluation Protocols.1025

• Section D: Details of the validation of human1026

alignment and the user study.1027

• Section E: The details of the experiment’s1028

setting.1029

• Section F: Ablation studies and experiments1030

related to multi-speaker dialogue evaluation.1031

• Section G: More reuslts and analysis of the1032

experiments.1033

• Section H: Limitations and future works.1034

• Section I: Potential social impact of LFS-1035

Bench.1036

A Details of LFS-Bench’s Construction1037

A.1 Explanation of Scenarios1038

LFS-Bench systematically categorizes the chal-1039

lenges inherent in current long-form speech gen-1040

eration into three primary dimensions: Acoustics,1041

Semantics, and Expressiveness. To facilitate a1042

more fine-grained and precise assessment, we cu-1043

rate a dataset of 1,101 audio samples aligned with1044

these dimensions, encompassing 17 downstream1045

scenarios such as audiobooks, podcasts, talk shows,1046

and news broadcasting. In the following section,1047

we comprehensively detail the audio scenarios and1048

data selection criteria associated with each chal-1049

lenge category.1050

Scenarios for Acoustics Challenges1051

In the context of long-form TTS and dialogue gen-1052

eration tasks, the primary user concerns regarding1053

acoustic performance are categorized as follows:1054

• Audio Quality: As a fundamental require-1055

ment, the generated audio must be devoid of1056

background noise and electronic artifacts, en-1057

suring high fidelity and clear auditory percep-1058

tion for the user.1059

• Timbre Consistency: In single-speaker set- 1060

tings, the speaker’s timbre must remain per- 1061

ceptually consistent throughout the sequence, 1062

analogous to identity preservation in video 1063

generation tasks. In multi-speaker dialog sce- 1064

narios, accurate speaker transitions are criti- 1065

cal, requiring precise alignment between the 1066

dialogue script and the corresponding speaker 1067

identities. 1068

• Acoustic Environment Consistency: The 1069

ability to maintain a stable sound field is a 1070

core capability in long-form speech gener- 1071

ation. This requires unity across acoustic 1072

dimensions, such as the recording environ- 1073

ment and sound imaging. Furthermore, in 1074

multi-speaker contexts, ensuring that differ- 1075

ent speakers appear to share a unified acoustic 1076

scene is a crucial objective. 1077

Based on the above basic requirements, we select 1078

six audio downstream scenarios to construct test 1079

cases related to the acoustic dimension, which are 1080

specifically introduced as follows. 1081

Customer Service Widely deployed in e- 1082

commerce, AI agents frequently deliver lengthy 1083

responses detailing policies and products. This 1084

scenario demands high-fidelity, artifact-free audio 1085

to maintain professional credibility and ensure a 1086

trustworthy user experience. 1087

Audiobooks As a quintessential long-form sce- 1088

nario, audiobooks demand rigorous acoustic consis- 1089

tency. The synthesis must maintain timbre stability 1090

to mitigate "speaker drift," preserve a stationary 1091

acoustic environment to ensure immersion, and 1092

guarantee high-fidelity quality for prolonged listen- 1093

ing comfort. 1094

Podcasts This scenario focuses on multi-turn 1095

dialogue generation and natural interaction. Char- 1096

acterized by an informal or semi-formal conver- 1097

sational style, this domain places relatively lower 1098

demands on dramatic expressiveness; however, it 1099

imposes strict requirements on turn-taking tran- 1100

sitions. Consequently, this scenario necessitates 1101

that TTS models not only execute accurate speaker 1102

switching but also synthesize appropriate and sta- 1103

ble reverberation to reconstruct an authentic and 1104

vivid conversational atmosphere. 1105

Chat, Debate, and Interview While lacking di- 1106

rect commercial applications, these real-world sce- 1107

narios serve as benchmarks for acoustic modeling 1108

limits. The frequent speaker transitions inherent in 1109
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these domains pose significant challenges to synthe-1110

sis systems. Furthermore, the associated complex1111

acoustic environments introduce additional layers1112

of difficulty regarding background noise and chan-1113

nel variability.1114

Scenarios for Semantics Challenges1115

In the semantic dimension, long-form speech gen-1116

eration is categorized into two sub-dimensions: ac-1117

curacy and naturalness.1118

• Content Accuracy: Evaluates the alignment1119

between the generated speech and the input1120

text. In long-sequence generation, this met-1121

ric primarily assesses the model’s robustness1122

against omissions, repetitions, and hallucina-1123

tions, ensuring high content fidelity.1124

• Prosodic Coherence: Evaluates the consis-1125

tency between prosodic structure and seman-1126

tic logic. Beyond natural pausing, this in-1127

cludes the appropriate handling of stress and1128

intonation, ensuring a fluent rhythm at the1129

paragraph level and avoiding mechanical or1130

disjointed delivery.1131

To rigorously evaluate model performance regard-1132

ing semantic challenges, we construct test cases1133

across five downstream scenarios, specifically tar-1134

geting the two aforementioned dimensions.1135

News and Popular Science In these scenarios,1136

content correctness is paramount, as users exhibit1137

minimal tolerance for semantic deviations. Con-1138

sequently, we curate instances featuring linguis-1139

tic complexity, challenging pronunciations, and1140

domain-specific knowledge to comprehensively as-1141

sess model robustness.1142

Lesson, Seminar, and Presentation Beyond1143

basic accuracy, these scenarios impose higher de-1144

mands on naturalness. Speakers are expected to1145

enhance auditory perception through appropriate1146

stress and rhythmic cadence. Therefore, in addition1147

to content complexity, we incorporated colloquial1148

expressions and diverse prosodic structures to fur-1149

ther evaluate the model’s prosodic coherence.1150

Scenarios for Expressiveness Challenges1151

Immersion and high expressiveness are the ultimate1152

goals of audio synthesis. For long-form generation,1153

given its temporal complexity, we decompose ex-1154

pressiveness into Richness and Hierarchy.1155

• Expressive Richness: Evaluates the overall1156

expressive quality through the lenses of emo-1157

tional resonance, character portrayal, and sto- 1158

rytelling. Similar to sentence-level synthesis, 1159

this metric primarily focuses on the **average 1160

magnitude** of expressiveness maintained 1161

throughout the entire audio sequence. 1162

• Expressive Hierarchy: Represents the fun- 1163

damental distinction between paragraph-level 1164

and sentence-level generation. The extended 1165

context necessitates a focus on dynamic varia- 1166

tions (e.g., shifts in emotion and volume) and 1167

the alignment between the acoustic evolution 1168

and the semantic scenario. 1169

Guided by these evaluation dimensions, we 1170

curate test cases across six highly expressive 1171

downstream scenarios to rigorously probe the up- 1172

per boundaries of model capabilities within LFS- 1173

Bench. 1174

Sportcast and Live Streaming: These scenar- 1175

ios predominantly challenge Expressive Richness. 1176

Characterized by sustained high-intensity delivery 1177

and emotional saturation, they demand that the 1178

model maintain a consistently elevated energy level 1179

to match the fast-paced nature of the content. 1180

Speech, Host, Talkshow, and Drama: These 1181

domains necessitate a synergy of both Richness 1182

and Hierarchy. Beyond high emotional fidelity, 1183

they require sophisticated control over dynamic 1184

evolution, such as tension building in drama or 1185

rhythmic variation in hosting, to ensure the acoustic 1186

delivery aligns seamlessly with the narrative arc. 1187

A.2 Details of Data Collection 1188

In this section, we provide further elaboration on 1189

the data sources and processing pipeline of LFS- 1190

Bench. 1191

Online Text Corpora 1192

For the Audiobook, News, Drama, and Host scenar- 1193

ios, we harvest long-form texts from diverse online 1194

resources, spanning classic literature, web novels, 1195

and TouTiao4. Following data acquisition via OCR 1196

or web crawling, we employ the clean-text5 li- 1197

brary to sanitize the raw corpus by removing arti- 1198

facts such as URLs, emojis, and garbled characters. 1199

Subsequently, human annotators conduct rigorous 1200

quality assurance and enrich the dataset with meta- 1201

data labels for scenario, topic, and speaker identity. 1202

4https://app.toutiao.com/news_article/
5https://pypi.org/project/clean-text/
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Online Audio Media1203

We extensively utilize online audio materials across1204

various scenarios, with data sources including1205

YouTube6, Bilibili7, Spotify8, RedNote9, and Ap-1206

ple Podcasts10. First, we crawl audio materials1207

tailored to our target scenarios from these plat-1208

forms. Subsequently, we denoise the raw audio1209

using Zipenhancer (Wang and Tian, 2025) to en-1210

sure processing accuracy. After obtaining cleaner1211

data, we filter out samples with low expressiveness1212

and quality based on a DNS-MOS (Reddy et al.,1213

2021) threshold of 3.5. We then perform speaker1214

diarization using 3D-Speaker (Zheng et al., 2023)1215

and transcribed the resulting audio segments via1216

SenseVoice-Small11. Finally, human annotators1217

are employed to proofread the machine-generated1218

transcripts against the ground truth and update the1219

metadata labels.1220

LLM Generation1221

In scenarios such as chat, presentations, and cus-1222

tomer service, we leverage GPT-5 (OpenAI, 2025)1223

to facilitate the generation of high-quality test cases.1224

Specifically, we designe sophisticated prompts to1225

guide the LLM in producing structured content1226

that aligns with specific scenarios and topics while1227

maintaining a certain level of generation complex-1228

ity. Figure 5 illustrates a set of prompts used for1229

generating presentation topics for computer sci-1230

ence students. These structured prompts serve as1231

customizable templates, allowing users to adapt1232

them for generating diverse long-form data. After1233

LLM generation, the generated content is mutually1234

proofread by annotators.1235

We recruit three undergraduate students for data1236

annotation and verification, compensated at a rate1237

of $0.20 per instance. To ensure quality, all data1238

samples are double-checked. The total expenditure1239

for the data collection process amount to $220.1240

A.3 Details of Data Refinement1241

Semantic De-duplication1242

To ensure data diversity, we perform topic-level1243

deduplication on both crawled and generated test1244

instances. Specifically, we utilized GPT-5 to extract1245

6https://www.youtube.com
7https://www.bilibili.com
8https://open.spotify.com/
9https://www.xiaohongshu.com/

10https://podcasts.apple.com/
11https://huggingface.co/FunAudioLLM/

SenseVoiceSmall

topics, keywords, and summaries from each long- 1246

text instance. These elements are concatenated 1247

and encoded into embeddings using Sentence- 1248

BERT12 (Reimers and Gurevych, 2019). We then 1249

filter out semantically redundant samples based on 1250

a cosine similarity threshold of 0.8 and replenish 1251

the dataset via LLM-based generation. 1252

Quality Evaluation 1253

We further employ GPT-5 to assess the quality of 1254

the de-duplicated samples. Specifically, we de- 1255

sign prompts to evaluate textual expressiveness and 1256

content consistency, guiding the LLM to rate the 1257

suitability of each instance for long-form speech 1258

generation on a scale of 1 to 5. Only samples with 1259

recommendation scores exceeding 2 are retained. 1260

The specific prompt used for this quality assess- 1261

ment is in Figure 6. 1262

Privacy and Ethical Filtering 1263

To ensure the safety and anonymity of our dataset, 1264

we employ DeepSeek V3.2 (Liu et al., 2024a) to 1265

conduct a rigorous privacy and ethical assessment. 1266

Specifically, we design a prompt incorporating 1267

Chain-of-Thought (CoT) (Wei et al., 2022) reason- 1268

ing to guide the model through a two-step analysis: 1269

1. Selective PII Anonymization: The model 1270

is instructed to specifically identify and 1271

anonymize the names of private individu- 1272

als (non-public figures). While the names of 1273

celebrities or public entities are retained to 1274

preserve contextual integrity, the names of 1275

ordinary citizens are replaced with generic 1276

placeholders or synthetic alternatives. 1277

2. Ethical Risk Assessment: The model then 1278

scrutinizes the content for social and ethical 1279

risks, including hate speech, violence, sexual 1280

explicitness, and bias. 1281

Based on this analysis, samples containing toxic 1282

content are discarded, while those with minor sen- 1283

sitivity issues are revised. The specific prompt used 1284

for this filtering is presented in Figure 7. 1285

Manual Review 1286

Following the automated filtering pipelines, we 1287

implement a three-stage human-in-the-loop review 1288

process to finalize the dataset. Expert annotators 1289

execute the following operations: 1290

12https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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Prompt for generating structured presentation data

You are an expert computer science professor and content creator. Your task is to generate a high-quality, long-form
presentation script on the topic: [Insert Topic Here].
Generation Requirements: 1. Complexity: The content must be academically rigorous, suitable for computer science
students. Include technical terminology and logical reasoning. 2. Structure: The speech should be coherent but
segmented into logical paragraphs. 3. Format: You must strictly output a valid JSON object without any Markdown
formatting.
JSON Schema:
{

"content": [
{

"speaker": "Speaker1",
"text": "The first paragraph of the speech..."

},
{

"speaker": "Speaker1",
"text": "The second paragraph of the speech..."

}
],
"num_speakers": 1,
"theme": "[Insert Topic Here]",
"source": "LLM Generation",
"TLDR": "A one-sentence summary of the presentation."

}

Figure 5: Prompt template used for generating presentation topics for computer science students.

1. Harmless Placeholder Infilling: For samples1291

that underwent privacy anonymization, the1292

automated generic tags (e.g., [NAME], [LOC])1293

are replaced with specific but fictitious entities.1294

This step ensures the text remains natural and1295

grammatically fluid while strictly maintaining1296

the harmlessness and anonymity.1297

2. Residual Error Purging: Annotators then1298

scrutinize the dataset to identify subtle logical1299

inconsistencies, formatting errors, or context1300

mismatches that might have evaded the auto-1301

mated filters. Samples deemed substandard or1302

unnatural are strictly discarded.1303

3. Dataset Replenishment: To compensate for1304

the discarded samples and maintain the vol-1305

ume, new instances are constructed. These1306

replenished samples undergo the same pro-1307

cess before being added to the final pool.1308

Five undergraduate students are enlisted for this1309

manual review, receiving a compensation of $0.301310

per instance. The cumulative expenditure for the1311

data collection process totaled $330.1312

A.4 Instructions for Use1313

The test set will be released on Hugging Face under1314

the CC BY-NC-SA 4.0 license, allowing for free1315

non-commercial use. For evaluations involving1316

additional voice profiles on our benchmark, users 1317

must strictly adhere to the specific licenses associ- 1318

ated with those assets. Furthermore, the complete 1319

codebase for data processing and evaluation will be 1320

made publicly available on our GitHub repository. 1321

B Statistics of LFS-Bench 1322

B.1 Categorical Statistics 1323

We present a comprehensive statistical analy- 1324

sis of the 1,101 samples in LFS-Bench across 1325

five key dimensions: language (Chinese/English), 1326

speaker configuration (single/dual/multi-speaker), 1327

core challenges (Acoustics, Semantics, Expressive- 1328

ness), scenarios, and content topics, as illustrated 1329

in Figure 8. As observed, LFS-Bench maintains a 1330

strictly balanced language ratio, comprising 49.3% 1331

Chinese and 50.7% English samples. Regarding 1332

speaker configuration, while the dataset primarily 1333

focuses on single-speaker long-form speech and 1334

dual-speaker dialogue, we explicitly include 101 1335

multi-speaker samples (involving 3 or 4 speakers) 1336

to facilitate the evaluation of multi-talker genera- 1337

tion capabilities. Furthermore, the dataset exhibits 1338

a relatively even distribution across the three core 1339

challenges, with the Acoustics challenge account- 1340

ing for the largest proportion at 34.5%. We also 1341

quantify the sample distribution across 17 specific 1342

downstream scenarios and generate a word cloud 1343

to visualize the topic diversity. This balanced sce- 1344
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Prompt for the evaluation of long-form instances

You are an expert linguist and data quality evaluator. Your task is to assess the suitability of the following text sample
for long-form speech generation.
Please evaluate the text based on the following two criteria:
1. Textual Expressiveness: Assess the fluency, naturalness, and rhetorical quality of the text. Is the language vivid and
rhythmically suitable for long-duration speech synthesis?
2. Content Consistency: Assess the logical coherence and semantic stability of the text. Is the narrative or argument
consistent throughout without contradictions or abrupt topic shifts?
Rate each criterion on a scale of 1 to 5 (1 = Poor, 5 = Excellent). Based on these, provide an Overall Score (1-5)
representing your recommendation for retaining this sample.
Output Requirement:
You must output the result strictly in the following JSON format:
{
"reasoning": "Provide a brief analysis explaining the scores, highlighting pros and cons.",
"textual_expressiveness_score": <integer between 1 and 5>,
"content_consistency_score": <integer between 1 and 5>,
"overall_score": <integer between 1 and 5>
}
Text to Evaluate:
[Insert Text Here]

Figure 6: Prompt template for the quality evaluation of test instances.

nario distribution, combined with a rich variety of1345

content topics, minimizes potential bias during the1346

evaluation process.1347

B.2 Distributional Statistics1348

We also conduct a detailed analysis of the text1349

length distribution within LFS-Bench, as illustrated1350

in Figure 9. Specifically, text length is quantified by1351

the number of characters for Chinese data and the1352

number of words for English data, excluding non-1353

phonetic elements such as punctuation. The results1354

indicate that text lengths for both languages follow1355

an approximate normal distribution, primarily con-1356

centrate within the interval [80, 500], with mean1357

lengths of 271.8 for Chinese and 174.6 for English.1358

This distribution effectively supports the rigorous1359

and realistic evaluation of long-form speech gener-1360

ation capabilities.1361

C Details of Evaluation Protocol1362

C.1 Timbre Consistency1363

To evaluate timbre consistency, we adopt a segment-1364

based speaker similarity approach following prior1365

zero-shot TTS studies (Du et al., 2024; Guo et al.,1366

2024b).1367

Specifically, for a single-speaker long-form1368

speech sample w, we apply a sliding window over1369

the waveform to extract a sequence of speaker em-1370

beddings {ei}ni=1 by WavLM TDCNN 13, where n1371

13https://huggingface.co/docs/transformers/en/
model_doc/unispeech-sat

denotes the number of windows. Given that speaker 1372

embeddings are sensitive to segment duration and 1373

verification models are typically optimized for 2– 1374

4s segments, we employ a window length of 3s 1375

with a stride of 2s. We then compute the pairwise 1376

cosine similarity between all distinct embeddings: 1377

simi,j = cos

(
ei

∥ei∥
,

ej
∥ej∥

)
, ∀i ̸= j. (2) 1378

Finally, we utilize the average score of the result- 1379

ing similarity sequence {simi,j} as the quantitative 1380

metric for timbre consistency. 1381

Evaluating dual and multi-speaker scenarios is 1382

inherently more complex due to the involvement 1383

of speaker transitions. To ensure validity, we first 1384

utilize 3D-Speaker (Zheng et al., 2023) to verify 1385

the number of speakers, confirming that at least 1386

one successful speaker turn occurs. Subsequently, 1387

let K denote the number of distinct speakers in 1388

the generated audio. We employ forced alignment 1389

to obtain sentence-level timestamps and concate- 1390

nate speech segments belonging to each speaker 1391

k ∈ {1, . . . ,K}, yielding a speaker-specific audio 1392

stream w̃k. We utilize a Paraformer-based Align 1393

Model14 (Gao et al., 2022) for Chinese data and 1394

WhisperX15 (Bain et al., 2023) for English data. 1395

Both models demonstrate alignment errors of less 1396

than 100ms on minute-level recordings, minimiz- 1397

ing error accumulation. Finally, for each speaker- 1398

14https://modelscope.cn/models/iic/speech_
timestamp_prediction-v1-16k-offline

15https://github.com/m-bain/whisperX
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Prompt for Privacy and Ethical Filtering

Role: You are an expert data safety and privacy compliance assistant. Your task is to review the input text for privacy
leaks and ethical risks.
Instructions: Please analyze the input text following these steps (Chain-of-Thought):

1. PII Detection (Selective): Identify all person names.

• If the name belongs to a public figure (celebrity, politician, historical figure), retain it to preserve context.
• If the name belongs to a private individual (ordinary citizen), anonymize it using a placeholder (e.g.,

[NAME]).

2. Ethical Risk Assessment: Check for hate speech, explicit violence, sexual content, or severe bias.

• If the risk is severe and cannot be mitigated, mark as invalid.
• If the risk is minor or related to PII, provide a revised version.

Output Format: Output the result in a strict JSON format with the following keys:

• "reasoning": A brief explanation of your analysis regarding PII and safety risks.

• "valid": Boolean (true/false). Set to false only if the content contains unmitigable toxic content. Set to true if
it is safe or has been successfully anonymized/revised.

• "revised_text": The clean version of the text after anonymizing private names and removing minor risks. If
invalid, return an empty string.

Input Text: [INPUT_TEXT]

Figure 7: The prompt template used for privacy and ethical filtering. It guides the LLM to selectively anonymize
private individuals’ names while retaining public figures, and outputs the decision in a structured JSON format.

specific stream w̃k, we compute its similarity av-1399

erage ak following the single-speaker protocol de-1400

fined above. The final metric is calculated as the1401

average across all speakers:1402

Scoremulti =
1

K

K∑
k=1

ak. (3)1403

C.2 Reverb Consistency1404

We employ the Speech-to-Reverberation Modula-1405

tion Energy Ratio (SRMR) to quantify reverbera-1406

tion intensity, analyzing its temporal fluctuations to1407

evaluate the model’s ability to maintain a consistent1408

acoustic environment.1409

Specifically, for a generated utterance w, we1410

apply a sliding window to compute the SRMR for1411

each segment using the SRMRpy toolkit16. To1412

balance estimation reliability with the temporal1413

resolution required to detect “reverberation drift”,1414

we adopt a window size of 3s and a stride of 2s,1415

consistent with our timbre consistency evaluation.1416

Furthermore, to mitigate the impact of non-1417

speech segments (e.g., silence or noise) on the sta-1418

tistical analysis, we pre-filter each window using a1419

16https://github.com/jfsantos/SRMRpy

Voice Activity Detection (VAD) model17. Any win- 1420

dow containing more than 60% non-speech frames 1421

is discarded. This process yields a sequence of 1422

valid reverberation scores {ri}ni=1, where n denotes 1423

the number of effective windows. 1424

Finally, we compute the standard deviation of 1425

this sequence as our Reverb Consistency metric; a 1426

lower value indicates a more stable reverberation 1427

pattern throughout the utterance. 1428

It is important to note that this metric is predi- 1429

cated on the assumption that the acoustic environ- 1430

ment within a single long-form segment should 1431

remain stable. We acknowledge that specific sce- 1432

narios, such as Outdoor Live Streaming, may inher- 1433

ently require dynamic acoustic shifts for semantic 1434

correctness. However, for the majority of stan- 1435

dard long-form synthesis tasks, acoustic stability 1436

serves as a critical indicator of generation robust- 1437

ness; therefore, we treat high variance as a penalty 1438

in this evaluation framework. 1439

17https://modelscope.cn/models/iic/speech_fsmn_
vad_zh-cn-16k-common-pytorch,
https://github.com/snakers4/silero-vad

19

https://github.com/jfsantos/SRMRpy
https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch
https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch
https://github.com/snakers4/silero-vad


(b) Word-cloud of content topic 

(c) Distribution of speaker’s number (d) Distribution of language

(e) Distribution of 
three core challenges

(f) Word count ratio of 
three core challenges

(a) Quantity of 17 scenarios

Figure 8: The categorical statistics of LFS-Bench across five key dimensions: language, speaker numbers, core
challenges, content topics and scenarios.

C.3 Sound Fidelity1440

To achieve a non-intrusive, reference-free assess-1441

ment of audio fidelity, we directly utilize the1442

SQUIM-PESQ metric via the official Torchaudio1443

interface18. This metric yields scores ranging from1444

-0.5 to 4.5, with values typically exceeding 1.0 for1445

speech audio.1446

C.4 Content Accuarcy1447

To quantify content accuracy, we employ Char-1448

acter Error Rate (CER) for Chinese and Word1449

Error Rate (WER) for English. The evalua-1450

tion pipeline proceeds as follows: First, we1451

obtain the transcribed text Tpred from the gen-1452

erated audio using FunASR-Nano19. Subse-1453

quently, we perform rigorous normalization on1454

both the ground truth Tgt and the prediction Tpred.1455

This process includes: 1) Punctuation Removal:1456

eliminating punctuation via string.punctuation1457

and zhon.hanzi.punctuation20; 2) Whitespace1458

Standardization: trimming leading/trailing spaces1459

and collapsing multiple spaces; and 3) Charac-1460

ter Normalization: converting Traditional Chi-1461

nese to Simplified using zhconv21 while filter-1462

ing non-ASCII characters in English text via1463

clean-text22. Finally, following the methodol-1464

18https://docs.pytorch.org/audio/main/
tutorials/squim_tutorial.html

19https://github.com/FunAudioLLM/Fun-ASR
20https://pypi.org/project/zhon/
21https://pypi.org/project/zhconv/
22https://pypi.org/project/clean-text/

ogy of F5-TTS (Chen et al., 2024c), we calculate 1465

the WER and CER using the JiWER library23. 1466

It is worth noting that our selected transcription 1467

system, FunASR-Nano, demonstrates exceptional 1468

performance on clean speech benchmarks, achiev- 1469

ing a WER of 1.76% on Librispeech-clean (EN) 1470

and a CER of 2.56% on Fleurs-zh. These results are 1471

competitive with state-of-the-art models of similar 1472

parameter scale (Srivastav et al., 2025). Utilizing 1473

such a high-performance ASR model minimizes 1474

transcription-induced errors, ensuring that the re- 1475

ported metrics accurately reflect the content fidelity 1476

of the generated audio. 1477

C.5 Prosodic Coherence 1478

For prosody evaluation, we utilize Speech- 1479

Judge (Zhang et al., 2025b), a fine-tuned Qwen2.5- 1480

Omni model specialized for audio assessment. To 1481

specifically target long-form modeling capabilities, 1482

we refine the original prompt design, decompos- 1483

ing the evaluation criteria into three granular di- 1484

mensions: Prosodic Coherence & Flow, Rhythmic 1485

Hierarchy & Layering, and Overall Naturalness. 1486

Ratings are assigned on a scale from 1.0 to 5.0, 1487

as detailed in Figure 12. Furthermore, to mitigate 1488

the inherent variance of LALMs, we conduct 10 1489

independent evaluations for each generated audio 1490

sample and calculate the mean to derive the final 1491

prosody score. 1492

23https://pypi.org/project/jiwer/

20
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Figure 9: The statistics of the text length distribution within LFS-Bench. The red dashed line indicates the average
text length of English, and the green dashed line indicates the average text length of Chinese.

C.6 Expressive Richness1493

This dimension assesses the global expressive qual-1494

ity of the generated speech, representing the av-1495

erage level of expressiveness. Formally, we seg-1496

ment the audio waveform into a sequence of non-1497

overlapping 10-second chunks {ci}Mi=1. An LALM1498

is then employed to assign an expressiveness score1499

si to each chunk ci. The final Expressive Richness1500

metric is defined as the arithmetic mean of these1501

segment scores:1502

Scorerich =
1

M

M∑
i=1

si. (4)1503

The 10-second segmentation window is selected1504

to align with the typical generation duration of1505

chunk-based long-form synthesis pipelines. This1506

strategy effectively mitigates the confounding ef-1507

fects of inter-chunk inconsistencies, allowing for a1508

more focused evaluation of intrinsic expressiveness.1509

The prompt template used for this assessment is1510

illustrated in Figure 14.1511

C.7 Expressive Hierarchy1512

Complementing the local expressiveness defined1513

above, paragraph-level expressive hierarchy is1514

equally critical in long-form settings. Unlike the1515

segment-based approach for Expressive Richness,1516

we leverage the long-context understanding capa-1517

bilities of modern LALMs to conduct a holistic1518

assessment. Specifically, the entire audio sequence1519

is fed into the model, which is instructed to evaluate 1520

the speech based on three dimensions: Emotional 1521

Variation, Vocal Dynamics, and Scene Appropri- 1522

ateness. 1523

The prompt template used for this assessment is 1524

illustrated in Figure 13. 1525

D User Study 1526

For the subjective evaluation, we recruit a balanced 1527

cohort of 10 expert listeners (5 male, 5 female) with 1528

diverse professional backgrounds, including audio 1529

engineers from the internet industry, live stream- 1530

ing specialists, and academic researchers (profes- 1531

sors and PhD candidates) in signal processing. All 1532

participants possess extensive experience in audio 1533

quality assessment. In all subjective tests, we con- 1534

duct Mean Opinion Score (MOS) evaluation. They 1535

are compensated at a rate of $1.00 per evaluation 1536

instance (either a single sample or a paired compar- 1537

ison), with the total expenditure for the user study 1538

amounting to $2,000. 1539

D.1 Validation of Timbre Consistency 1540

In this experiment, we randomly select 50 samples 1541

from the test set for subjective evaluation. Listen- 1542

ers are instructed to rate the “Timbre Maintenance” 1543

capability using a Mean Opinion Score (MOS). 1544

They are explicitly required to focus exclusively 1545

on timbre stability, disregarding other acoustic fac- 1546

tors (e.g., sound field, audio quality) and semantic 1547

dimensions (e.g., pronunciation, prosody). If the 1548

21



expressiveness of the audio does not affect the tim-1549

bre, it can also be ignored.1550

We concurrently compute the objective Timbre1551

Consistency score for each sample. The corre-1552

lation analysis between the subjective MOS and1553

our objective metric yields the following results:1554

SRCC=0.75, PLCC=0.77, and KRCC=0.59. These1555

results demonstrate that our proposed timbre con-1556

sistency evaluation aligns closely with human per-1557

ception.1558

Furthermore, the user study reveals several sta-1559

tistical thresholds regarding our objective metric:1560

1. Score < 0.85: Indicates significant timbre1561

drift. In multi-speaker scenarios, this may1562

also suggest inaccurate speaker transitions.1563

2. Score < 0.93: Demonstrates superior timbre1564

maintenance, with performance comparable1565

to ground truth recordings.1566

3. Score ∈ [0.85, 0.90]: Represents generally ac-1567

ceptable performance, typically characterized1568

by minor local timbre mutations or artifacts.1569

Besides, the robustness of this metric presents1570

room for improvement. Potential misclassifications1571

may arise in specific edge cases, such as audio ex-1572

hibiting periodic timbre variations (e.g., looping1573

patterns). Since our metric relies on global aver-1574

ages, it may fail to penalize such rhythmic fluctua-1575

tions, yielding a favorable score despite perceptual1576

inconsistency. Future work will aim to incorpo-1577

rate temporal modeling to address these dynamic1578

artifacts.1579

D.2 Validation of Sound Fidelity1580

Considering that SQUIM-PESQ is trained on English1581

sentence-level data, we select 50 samples from the1582

test set to verify its generalization to Chinese and1583

long-form scenarios. Listeners are instructed to rate1584

“Clarity and Fidelity” using MOS. Specifically, they1585

are required to focus exclusively on factors such as1586

background noise, artifacts, and articulation, while1587

disregarding prosody and expressiveness. We con-1588

currently compute the SQUIM-PESQ scores for these1589

samples. The correlation analysis between subjec-1590

tive MOS and SQUIM-PESQ yield an SRCC of 0.72,1591

a PLCC of 0.47, and a KRCC of 0.53. These re-1592

sults demonstrate that the metric aligns closely with1593

human perception.1594

Table 4: Human alignment comparison across different
LALMs on Expressive Richness.

Models PLCC SRCC QWK MAE

UTMOS -0.0203 -0.0433 -0.0313 1.043
UTMOSv2 -0.0745 -0.0789 -0.0827 0.9012

SQUIM-MOS -0.3145 -0.2767 -0.0825 1.3177
DNS-MOS -0.0243 -0.0189 -0.0034 0.8537

GPT-4o 0.1549 0.2002 0.1435 0.7982
Qwen3Omni-Flash 0.1464 0.1696 0.0812 1.0401

Qwen3Omni-Instruct 0.2245 0.2488 0.1172 1.0809
Gemini2.5-flash 0.4166 0.4079 0.2623 0.8123
Gemini2.5-pro 0.5085 0.5160 0.4242 0.7635
Gemini3-flash 0.5224 0.5266 0.5066 0.6562
Gemini3-Pro 0.7061 0.7080 0.6772 0.5879

D.3 Validation of Prosodic Coherence 1595

To validate the Prosodic Coherence metric, we 1596

adopt the methodology of SpeechJudge (Zhang 1597

et al., 2025b), conducting a human preference test 1598

to assess the model’s evaluation performance. In 1599

addition to the robust correlation reported in Sec- 1600

tion 3.5, our analysis yields the following statistical 1601

insights: 1602

1. Score Divergence > 1: A difference of more 1603

than 1 points indicates a substantial and per- 1604

ceptually obvious gap in prosodic quality be- 1605

tween audio samples. 1606

2. Score ≥ 4: Audio samples achieving 1607

this threshold demonstrate competent basic 1608

prosody and rhythmic structure. 1609

3. Score ≥ 4.5: Performance at this level is 1610

considered virtually indistinguishable from 1611

ground truth recordings. 1612

D.4 Validation of Expressiveness 1613

In this experiment, we curate a diverse set of 200 1614

samples spanning all models and tasks for subjec- 1615

tive evaluation. Listeners are tasked with rating the 1616

audio strictly adhering to the same prompt criteria 1617

provided to the LALMs. 1618

Concurrently, we benchmark this 200-sample 1619

test set against 4 specialized MOS prediction mod- 1620

els (UTMOS (Saeki et al., 2022), UTMOSv2 (Baba 1621

et al., 2024), SQUIM-MOS (Kumar et al., 2023), 1622

DNS-MOS (Reddy et al., 2021)) and 8 flag- 1623

ship LALMs (GPT-4o, Qwen3Omni-Instruct-30B- 1624

A3B (Xu et al., 2025b), Qwen3Omni-Flash, 1625

StepFun-Audio-R1 (Tian et al., 2025), Gemini-2.5- 1626

flash, Gemini-2.5-pro, Gemini-3-flash, Gemini-3- 1627

pro). Notably, due to context length constraints, 1628

only a subset of these LALMs is employed for the 1629

Expressive Hierarchy evaluation. 1630
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Table 5: Human alignment comparison across different
LALMs on Expressive Hierarchy.

Models PLCC SRCC QWK MAE

GPT-4o 0.1328 0.1171 0.0803 0.7604
Qwen3Omni-Flash 0.3263 0.2496 0.2193 0.8426

Qwen3Omni-Instruct 0.1641 0.1181 0.0869 0.9130
Gemini2.5-flash 0.0421 0.0005 0.0256 0.8673
Gemini2.5-pro 0.3732 0.3744 0.2871 0.800
Gemini3-flash 0.406 0.3924 0.2032 1.1837
Gemini3-Pro 0.6041 0.6234 0.5452 0.7204

We examine the correlation between the mean1631

listener ratings and the model-predicted scores,1632

with results summarized in Table 4 and Table 5.1633

Notably, Gemini3-Pro demonstrates superior per-1634

formance, significantly outperforming other mod-1635

els across both metrics. It is also worth noting that1636

all traditional MOS prediction networks exhibited1637

poor correlation with human perception regarding1638

expressiveness. This suggests that standard MOS1639

training datasets likely lack a specific focus on ex-1640

pressive qualities.1641

Moreover, we conduct independent repeated tri-1642

als on this test set to validate the stability of our1643

selected evaluator, Gemini 3 Pro. Specifically, we1644

perform five independent scoring iterations for each1645

audio sample, where Gemini 3 Pro yields inconsis-1646

tent scores for only 11 instances, demonstrating a1647

level of robustness comparable to human evaluators.1648

Consequently, we adopt a single-pass evaluation1649

strategy for this metric.1650

Furthermore, to ensure consistency in the rating1651

scales adopted by our recruited listeners, we com-1652

puted the correlation between each individual rater1653

and the mean score of the remaining raters. As1654

shown in Table 6, the high inter-rater correlation1655

confirms the reliability and validity of our evalua-1656

tion protocol.1657

E Implementation Detail1658

E.1 Computational Resources and1659

Environments1660

All inference and evaluation experiments for open-1661

source models are conducted on a server equipped1662

with 8 NVIDIA GeForce RTX 4090 GPUs and an1663

Intel Xeon Gold 6530 CPU, running Ubuntu 22.04.1664

For model inference, we strictly adhere to the envi-1665

ronment specifications provided in the respective1666

official repositories. The core dependencies for our1667

evaluation pipeline include Python 3.10, PyTorch1668

2.8.0, Torchaudio 2.8.0, and Transformers 4.57.3.1669

E.2 Selected Voice 1670

For open-source models, we curate a set of 25 1671

reference audio prompts from diverse datasets, 1672

including Emilia (He et al., 2024), AISHELL- 1673

3 (Shi et al., 2020), NCSSD (Liu et al., 2024b), 1674

LibriSpeech (Panayotov et al., 2015), MSPPod- 1675

cast (Martinez-Lucas et al., 2020), and ChildMan- 1676

darin (Zhou et al., 2025a), as well as reference 1677

voices provided in specific model repositories (see 1678

Table 7). We conduct extensive evaluations across 1679

these prompts and reported the results of the best- 1680

performing voice for each model. This strategy 1681

aims to minimize the impact of biases arising from 1682

training data discrepancies and inherent voice pref- 1683

erences. 1684

For closed-source models, we selected offi- 1685

cial voices characterized by high fidelity, superior 1686

prosody, and rich expressiveness. Detailed specifi- 1687

cations are provided in Table 8. 1688

E.3 Synthesis Strategy 1689

For open-source models, we strictly adhere to the 1690

default configurations provided in their official 1691

repositories. Specific adjustments for MegaTTS3, 1692

CosyVoice3, and IndexTTS2 are detailed below: 1693

MegaTTS3 As the official VAE En- 1694

coder (Kingma et al., 2013) is not publicly 1695

available, we obtain the VAE latents for our 1696

reference prompt speech by contacting the model 1697

maintainers. 1698

IndexTTS2 To ensure a fair and objective com- 1699

parison, we disabled the text sentiment analysis 1700

module by setting use_emo_text to false. 1701

CosyVoice3 We utilized the system text prompt 1702

“You are a helpful assistant” during generation, con- 1703

sistent with the official implementation. 1704

For closed-source models, we similarly followed 1705

the default synthesis strategies without manually 1706

adjusting attributes such as emotion, pitch, or 1707

speaking rate. 1708

All open-source models are evaluated in a zero- 1709

shot setting for long-form and dialogue generation, 1710

whereas closed-source models generated speech 1711

using designated voice profiles. Finally, all gen- 1712

erated audio is resampled to 24kHz for consistent 1713

evaluation. 1714

F Supplementary Experiment 1715

F.1 Inference Speed 1716

The capability to efficiently generate long-form 1717

speech is a pivotal performance criterion, garner- 1718
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Table 6: Correlation analysis among different evaluators (A denotes Annotator).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

PLCC(↑) 0.8696 0.8426 0.9014 0.9035 0.9163 0.8766 0.9022 0.7080 0.8830 0.7623
SRCC(↑) 0.8711 0.8296 0.9028 0.9025 0.9143 0.8635 0.8945 0.7010 0.8820 0.7585
KRCC(↑) 0.7255 0.6804 0.7726 0.7678 0.7872 0.7238 0.7575 0.5399 0.7405 0.6011
QWK(↑) 0.8732 0.8330 0.9030 0.8984 0.9079 0.8544 0.8938 0.7002 0.8740 0.7596
MAE(↓) 0.3713 0.4398 0.3336 0.3452 0.3336 0.3994 0.3541 0.5800 0.3892 0.5402

Table 7: Sources and related information of the voice
used in LFS-Bench for open-source models’ inference.

No. Gender Age Group Language Data Source

1 Female

Children

English Emilia
2 Male English Emilia
3 Female Chinese ChildMandarin
4 Male Chinese ChildMandarin

5 Female

Teenager

English NCSSD_R_EN
6 Male English NCSSD_R_EN
7 Female Chinese AISHELL-3
8 Male Chinese NCSSD_R_ZH

9 Female

Youth-Adult

English msppodcast
10 Male English NCSSD_R_EN
11 Female Chinese AISHELL-3
12 Male Chinese NCSSD_R_ZH
13 Male Chinese VibeVoice Github
14 Female Chinese VibeVoice Github
15 Male English VibeVoice Github
16 Female English VibeVoice Github

17 Female

Middle-Aged

English LibriSpeech
18 Male English Emilia
19 Female Chinese NCSSD_C_ZH
20 Male Chinese NCSSD_C_ZH
21 Male Chinese SparkTTS Github

22 Female

Elderly

English msppodcast
23 Male English msppodcast
24 Female Chinese NCSSD_C_ZH
25 Male Chinese NCSSD_C_ZH

ing widespread attention across both academia and1719

industry. To assess this, we evaluate the compu-1720

tational efficiency of various open-source models1721

using the Real Time Factor (RTF) metric. The RTF1722

is defined as:1723

RTF =
Tinference

Taudio
, (5)1724

where Tinference denotes the time required for gen-1725

eration and Taudio represents the duration of the1726

generated audio. The computational efficiency re-1727

sults for each model are summarized in Table 9 and1728

Table 10. We observe that non-autoregressive mod-1729

els exhibit a significant advantage in generation1730

speed compared to their autoregressive counter-1731

parts. This finding is consistent with the inherent1732

parallel decoding mechanism of non-autoregressive 1733

architectures. 1734

F.2 Ablation on Window Size 1735

The computation of both Timbre Consistency and 1736

Reverb Consistency may be sensitive to the sliding 1737

window configuration. To validate the rationality 1738

of our selected window size and stride, we conduct 1739

an ablation study across these two dimensions. The 1740

experimental results are in Table 11 and Table 12. 1741

In the ablation study for timbre consistency, we 1742

observe that a window size of ≤ 2s results in real 1743

data exhibiting lower consistency than CosyVoice3, 1744

suggesting a misalignment with human perception. 1745

Conversely, window sizes of ≥ 4s gradually re- 1746

duce the discrepancy between real and synthetic 1747

data, indicating that larger windows tend to av- 1748

erage out transient timbre mutations. Regarding 1749

the stride, comparative experiments reveal no sig- 1750

nificant impact on the results. Consequently, to 1751

enhance evaluation efficiency and reduce computa- 1752

tional overhead, we opt for a larger stride. Based 1753

on these findings, we select a window size of 3s 1754

and a stride of 2s. 1755

In the ablation study for reverb consistency, a 1756

window size of 1s provides sufficient differentia- 1757

tion but proved unstable. Specifically, VibeVoice 1758

exhibit an excessively high standard deviation rel- 1759

ative to its mean reverb score of 9.25, indicating 1760

hypersensitivity at this scale. Conversely, window 1761

sizes of ≥ 4s reduce the inter-model differences, 1762

implying that overly large windows overlook small- 1763

scale acoustic field mutations. Balancing compu- 1764

tational efficiency and resource overhead, we simi- 1765

larly select a window size of 3s and a stride of 2s. 1766

Notably, our evaluation method demonstrates over- 1767

all stability, as the relative rankings of the models 1768

remain consistent. 1769
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Table 8: the information of the voices selected in the evaluation for closed-source models.

Provider Language Single Speaker Two Speakers Multi Speakers

OpenAI General Alloy Onyx, Nova Round-robin: [“alloy”, “echo”, “fable”, “onyx”, “nova”, “shimmer”]

Gemini General Puck Puck, Aoede Round-robin: [“Puck”, “Aoede”, “Charon”, “Kore”, “Fenrir”]

ElevenLabs General Rachel Charlie, Rachel Charlie, Rachel, George, Bella, Antoni

Minimax
English male-qn-qingse – –

Chinese Chinese (Mandarin)_ Male_Announcer – –

Seed-TTS
English BV503_streaming – –

Chinese BV005_streaming – –

Seed-TTS-Podcast General –
zh_male_dayixiansheng_v2_saturn_bigtts,

–
zh_female_mizaitongxue_v2_saturn_bigtts

Inworld
English Deborah, Alex – –

Chinese Jing, Yichen – –

Reverb Consistency Sound Fidelity

Content Accuracy Prosodic Coherence Expressive HierarchyExpressive Richness

Timbre Similarity Timbre Consistency

Figure 10: Results on Sequence Length. The horizontal axis represents the number of sentences in the text. Solid
lines denote models using the End-to-End strategy, while dashed lines represent the chunked synthesis.

F.3 Ablation on Generated Length1770

To further verify the impact of long-sequence mod-1771

eling on acoustic, semantic, and expressive perfor-1772

mance, we extend the analysis presented in Fig-1773

ure 4. Beyond the original six dimensions, we addi-1774

tionally track the evolution of Timbre Consistency1775

and Timbre Similarity with respect to increasing1776

generation length, as shown in Figure 10.1777

Regarding the Timbre Similarity metric, we1778

adopt the methodology from prior works (Huynh-1779

Nguyen et al., 2025). Specifically, the generated1780

audio w is segmented into a sequence {wi}ni=1 us-1781

ing a window size of 3s and a stride of 2s. We then1782

utilize WavLM TDCNN24 to extract and normalize1783

speaker embeddings for each segment wi and the1784

reference audio wref , yielding the embedding se-1785

quence {ei}ni=1 and the reference embedding eref .1786

Finally, we calculate the average cosine similarity1787

24https://huggingface.co/docs/transformers/en/
model_doc/unispeech-sat

between the generated segment embeddings and 1788

the reference embedding to serve as the quantitative 1789

indicator of Timbre Similarity. 1790

Overall, we observe a general performance de- 1791

cay across nearly all metrics as the generation du- 1792

ration increases. Specifically, Reverb Consistency, 1793

Prosodic Coherence, and Expressive Hierarchy ex- 1794

hibits the most significant degradation. These find- 1795

ings suggest that current models struggle to main- 1796

tain acoustic field stability and effectively capture 1797

long-term dependencies in long-form settings. Con- 1798

versely, Timbre Similarity and Timbre Consistency 1799

remained relatively stable compared to other acous- 1800

tic dimensions. This stability highlights the ef- 1801

fectiveness of “in-context learning” paradigms (Du 1802

et al., 2024; Jiang et al., 2025) in preserving speaker 1803

identity. Additionally, with the exception of Spark- 1804

TTS, most models demonstrate robust Content Ac- 1805

curacy. This can be attributed to the strong text 1806

understanding and alignment capabilities inherent 1807

25

https://huggingface.co/docs/transformers/en/model_doc/unispeech-sat
https://huggingface.co/docs/transformers/en/model_doc/unispeech-sat


Table 9: The Real Time Factor of mono-speaker long
form speech generation models.

Models RTF

Autoregressive Models

CosyVoice-2 (0.5B) 1.061 ± 0.031
CosyVoice-3 (0.5B) 0.747 ± 0.048
FishSpeech (0.5B) 1.351 ± 0.131
GLM-TTS (1.5B) 2.400 ± 0.158

IndexTTS-2 (0.1B) 1.065 ± 0.037
SparkTTS (0.5B) 2.046 ± 0.212
VibeVoice (1.5B) 3.801 ± 0.317

Non-Autoregressive Models

F5TTS (0.3B) 0.198 ± 0.006
MegaTTS3 (0.45B) 0.172 ± 0.002
ZipVoice (0.12B) 0.338 ± 0.013

Table 10: The Real Time Factor of two-speaker dialogue
generation models. MOSS-TTSD supports batch infer-
ence, thus we directly report the RTF of batch process(
batchsize = 32)

Models RTF

FireRedTTS2 4.717 ± 0.963
MoonCast (2.6B) 5.219 ± 0.048

MOSS-TTSD (1.7B) 0.219 ± 0.019
SoulX-PodCast (1.7B) 2.143 ± 0.169

VibeVoice (1.5B) 4.092 ± 0.305
ZipVoice-Dialog (0.12B) 0.305 ± 0.030

in modern TTS architectures.1808

F.4 Multi-Speaker Dialogue Generation1809

To facilitate future research in multi-speaker long-1810

form speech synthesis, LFS-Bench incorporates1811

101 test cases specifically designed for 3- and 4-1812

speaker dialog scenarios. Using this subset, we1813

evaluate three closed-source models capable of1814

multi-speaker generation: ElevenLabs Multilingual1815

V2, Gemini-2.5-pro-preview-tts, and OpenAI-tts-1-1816

hd. The experimental results are shown in Table 13.1817

G More Analysis Based on LFS-Bench1818

G.1 Detailed analysis on each metric1819

Timbre Consistency Although experimental re-1820

sults indicate that real data generally outperforms1821

synthetic data in timbre consistency (single speaker:1822

0.96 vs. 0.93; two-speaker: 0.95 vs. 0.92), this gap1823

is not significant. This suggests that the consis-1824

Table 11: The Ablation study of window setting for
timbre consistency. We select the representative mod-
els, CosyVoice3 and OpenAI-tts-1-hd, to conduct this
ablation in single-spaeker settings.

Window Setting
CosyVoice3 OpenAI Real-Speech

Size (s) Stride (s)

1 0.5 0.868 0.824 0.844
2 1 0.911 0.887 0.901
3 1 0.930 0.916 0.956
3 2 0.929 0.915 0.955
4 2 0.941 0.931 0.963
5 2 0.942 0.949 0.967
10 4 0.968 0.971 0.971

Table 12: The Ablation study of window setting for
reverb consistency. We select the representative models,
VibeVoice and Gemini-2.5-pro-preview-tts, to conduct
this ablation in two-spaeker settings.

Window Setting
VibeVoice Gemini Real-Dialog

Size (s) Stride (s)

1 0.5 6.40 4.99 3.87
2 1 4.27 3.62 3.20
3 1 3.58 3.17 2.67
3 2 3.59 3.17 2.74
4 2 3.20 2.85 2.51
5 2 2.95 2.61 2.41
10 4 2.23 1.88 1.60

tency performance of current models is acceptable. 1825

However, we offer two deeper insights. First, open- 1826

source models exhibit a relatively larger standard 1827

deviation compared to closed-source models, indi- 1828

cating that their stability still lags behind commer- 1829

cial solutions. Second, dialogue models demon- 1830

strate greater variance in timbre consistency than 1831

single-speaker long-form speech. Given that we 1832

have minimized error accumulation from forced 1833

alignment, this increased variance likely reflects 1834

that models are still hindered by speaker transi- 1835

tions. 1836

Reverb Consistency In this dimension, single- 1837

speaker performance is comparable to human 1838

recordings. Apart from the CosyVoice series and 1839

ElevenLabs models, which underperform on this 1840

metric, other models maintain robust reverb consis- 1841

tency, demonstrating strong acoustic field preser- 1842

vation over extended durations. Conversely, in dia- 1843

logue scenarios, all open-source models and the ma- 1844

jority of closed-source models show a significant 1845

performance gap compared to real data (Open av- 1846

erage: 3.45; Closed average: 3.36). Feedback from 1847
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Table 13: Results of multi-speaker dialogue generation models across LFS-Bench’s metrics. The best results
are in bold and the second best are underlined.

Acoustics Semantics Expressiveness
Model Timbre(↑) Reverb(↓) Sound Fidelity(↑) CER/WER(↓) Prosody(↑) Richness(↑) Hierarchy(↑)

Elevenlabs Multilingual V2 0.93±0.030 4.72±0.69 3.19±0.37 0.183 / 0.12 3.28±0.87 3.23±0.54 3.52±0.82
Gemini-2.5-pro-preview-tts 0.92±0.012 3.28±0.75 3.04±0.17 0.077 / 0.102 3.92±0.36 3.86±0.46 4.05±0.62

OpenAI-tts-1-hd 0.92±0.011 1.91±0.38 2.29±0.17 0.106 / 0.104 3.78±0.63 2.93±0.60 3.77±0.84
Average 0.92 3.30 2.84 0.122 / 0.109 3.66 3.34 3.78

our user study further reveals inconsistencies in1848

sound fields and volume between speakers in gen-1849

erated dialogues. This indicates a need to enhance1850

the models’ ability to disentangle prompt speech1851

attributes. Consequently, future work should pri-1852

oritize maintaining acoustic unity during speaker1853

transitions.1854

Sound Fidelity Regarding this metric, the perfor-1855

mance of generated speech aligns closely with that1856

of real data. Notably, models such as FishSpeech1857

and ElevenLabs achieve scores significantly sur-1858

passing the mean of real data. This suggests that1859

contemporary models have largely resolved sound1860

quality constraints. The fact that generated speech1861

outperforms human recordings likely stems from1862

the composition of the real data. Since the major-1863

ity of real data is web-crawled rather than studio-1864

recorded, it is susceptible to device and environ-1865

mental noise, which compromises its fidelity.1866

Content Accuracy Prior studies indicate that1867

metrics such as WER have reached saturation1868

in sentence-level speech generation (Chen et al.,1869

2024b). This finding extends to chunk-based in-1870

context learning approaches, where models like1871

CosyVoice2 and MegaTTS3 demonstrate excep-1872

tional performance. However, the metric remains1873

relevant for autoregressive end-to-end architectures.1874

For instance, SparkTTS exhibits suboptimal Con-1875

tent Accuracy in long-form generation. As in Fig-1876

ure 10, deeper ablation studies confirm that the1877

character accuracy of such models declines as the1878

text length increases.1879

Prosodic Coherence Regarding prosodic coher-1880

ence, we observe a distinct gap between real and1881

synthetic speech, suggesting that current models1882

require further improvement in prosody modeling.1883

Notably, closed-source models significantly out-1884

perform their open-source counterparts in this di-1885

mension. This indicates that while open-source1886

models achieve parity with state-of-the-art systems1887

in fidelity and content accuracy, they still lag in1888

perceptual metrics such as prosodic naturalness. 1889

Expressive Richness Experimental results iden- 1890

tify expressiveness as the primary differentiator be- 1891

tween real and synthetic audio. Specifically, open- 1892

source models trail real data by approximately 1893

1.5 points in Expressive Richness. While closed- 1894

source models demonstrate marked improvement, 1895

they still exhibit a gap of nearly 1.0 point. Further- 1896

more, our scenario-based analysis confirms that 1897

models underperform in high-expressiveness set- 1898

tings. These findings consistently underscore that 1899

generating realistic, highly expressive speech re- 1900

mains a pivotal challenge for achieving immersive 1901

audio generation. 1902

Expressive Hierarchy Similar to Expressive 1903

Richness, real data outperforms synthetic speech 1904

in this metric, with closed-source models surpass- 1905

ing their open-source counterparts. Notably, in 1906

single-speaker tasks, models consistently achieve 1907

lower scores on Expressive Hierarchy compared 1908

to Expressive Richness. This indicates that cap- 1909

turing and modeling paragraph-level hierarchical 1910

structure remains a significant challenge. Further- 1911

more, dialog models generally exhibit superior hi- 1912

erarchical performance compared to single-speaker 1913

models. We attribute this to the inherent semantic 1914

logic of dialog interactions, which likely provides 1915

stronger contextual cues that facilitate the learning 1916

of hierarchical patterns. 1917

G.2 Analysis based on the scenarios 1918

We extend our analysis by providing scenario- 1919

based performance results, visualizing the metrics 1920

of closed-source models via a radar chart in Fig- 1921

ure 11. These detailed findings corroborate our 1922

primary conclusion: most metrics exhibit vary- 1923

ing degrees of degradation in high-expressiveness 1924

scenarios. A granular visualization reveals that 1925

challenging scenarios such as sportscast, host, and 1926

talk-show suffer the most severe performance de- 1927

cline. This further indicates that current models 1928

27



lack the capacity to effectively model highly dy-1929

namic prosody and intense emotional variations.1930

We provide a detailed explanation of the nor-1931

malization procedures applied to the radar charts1932

in Figure 11. For LALM-based metrics (Expres-1933

sive Richness, Expressive Hierarchy, Prosodic Co-1934

herence), we directly utilize the original values1935

as its definition is consistent with that of MOS1936

scores. For Fidelity, quantified by SQUIM-PESQ1937

(range [−0.5, 4.5]), we apply a linear shift of +0.51938

for alignment. Regarding Timbre Consistency, Re-1939

verb Consistency, and Content Accuracy, we first1940

identify the global maximum smax and minimum1941

smin across all models in all scenarios. Then, we1942

employ a mapping function f that projects the1943

range [smin, smax] onto the interval [1, 5]. This1944

transformation ensures that for all dimensions in1945

the radar chart, a larger value consistently repre-1946

sents superior performance. The radar charts in1947

Figure 3 and Figure 1 follow this identical normal-1948

ization protocol.1949

G.3 Analysis based on the Languages1950

We also present the experimental results for the1951

evaluated models across the two covered languages,1952

Chinese and English, as shown in Table 14 and1953

Table 15.1954

We observe that although all evaluated models1955

claim bilingual capabilities, the target language1956

significantly impacts performance for the major-1957

ity. For instance, despite utilizing identical voice1958

profiles, ElevenLabs Multilingual V2 exhibits a1959

marked disparity in Expressive Richness between1960

Chinese and English (1.79 vs. 2.87). A similar di-1961

vergence is evident in Seed-TTS-Podcast (Chinese:1962

4.19 vs. English: 3.49). In contrast, Gemini-2.5-1963

pro-preview-tts stands out by not only delivering1964

exceptional performance in prosody and expres-1965

siveness but also maintaining a consistent balance1966

across both languages.1967

H Future Works1968

While LFS-Bench provides a comprehensive evalu-1969

ation framework for long-form speech generation,1970

several challenges warrant further exploration:1971

Dependency on Closed-source Models: The1972

evaluation of Expressiveness in LFS-Bench cur-1973

rently relies on closed-source models such as Gem-1974

ini 3 Pro. The absence of open-source alterna-1975

tives poses a risk to reproducibility due to potential1976

updates in closed-source APIs. Future work will1977

focus on distilling high-performance open-source 1978

evaluators using data derived from both human as- 1979

sessments and closed-source model outputs. 1980

Limited Language Coverage: Our current 1981

dataset focuses exclusively on English and Chi- 1982

nese, omitting other languages, particularly low- 1983

resource ones. Future efforts should aim to expand 1984

the linguistic breadth of long-form speech genera- 1985

tion evaluation. 1986

Timbre Sensitivity: To ensure diversity, LFS- 1987

Bench utilizes over 20 reference voices spanning 1988

various genders and ages. However, as noted in 1989

prior work (Manku et al., 2025), model perfor- 1990

mance in expressiveness and prosody is highly sen- 1991

sitive to the reference voice. Our current selection 1992

may not be sufficiently diverse. Future research 1993

should investigate the impact of input voice charac- 1994

teristics on long-form synthesis more deeply. 1995

Instruction Following Capabilities: LFS- 1996

Bench primarily evaluates models in zero-shot set- 1997

tings. However, recent advancements have intro- 1998

duced models capable of Instruct-based speech 1999

generation (Huang et al., 2025; Wang et al., 2025; 2000

Zhou et al., 2025b; Xu et al., 2025b). Developing 2001

long-form InstructTTS systems and evaluating their 2002

instruction-following capabilities in long-context 2003

settings represent significant avenues for future re- 2004

search. 2005

I Social Impacts 2006

This work aims to advance immersive and robust 2007

long-form speech generation, facilitating superior 2008

downstream applications. However, enhanced gen- 2009

erative capabilities inevitably heighten the risk of 2010

misuse, potentially violating ethical norms and le- 2011

gal regulations. These risks highlight the critical 2012

need for ethically aligned practices and sufficient 2013

oversight. To mitigate these concerns, we sub- 2014

jected our text data to rigorous ethical review and 2015

anonymization. We also verified that the accompa- 2016

nying audio samples are free of Personally Identifi- 2017

able Information (PII). Additionally, we mandate 2018

that all researchers utilizing this benchmark strictly 2019

adhere to the CC BY-NC-SA 4.0 license. We hope 2020

that the progress in speech generation technology 2021

will benefit society through responsible and ethical 2022

deployment. 2023
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Acoustics

(1) Podcast

(2) Debate

(3) Audiobook

(4) Live Streaming

Expressiveness

(5) Hosting

(8) Talk Show

(7) Sportscast

(6) Speech

(9) News

(10) Popular Science

(11) Presentation

(12) Lesson

Semantics

Figure 11: We visualize the performance of closed-source models in single-speaker long-form generation across
various downstream scenarios using a radar chart. To ensure consistency, we normalize the metrics for Timbre
Consistency, Reverb Consistency, and Content Accuracy within their respective minimum and maximum ranges. As
a result, all metrics are presented such that higher values indicate better performance.
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Table 14: Evaluation results of long-form TTS models across two languages. Metrics cover Acoustics (Timbre/Re-
verb Consistency, Fidelity), Semantics (Content Accuracy, Prosodic Coherence), and Expressiveness (Richness,
Hierarchy). Closed-source models and open-source models are separately marked, with the best results in bold and
the second best italic. Chinese results and English results are separately marked as well, with Chinese in black and
English in red.

Acoustics Semantics Expressiveness
Models Languages Timbre(↑) Reverb(↓) Fidelity(↑) Content(↓) Prosody(↑) Richness(↑) Hierarchy(↑)

Open-Source Models

ZH 0.90 0.79 3.47 0.329 2.37 3.29 2.11SparkTTS EN 0.95 2.96 3.70 0.240 2.78 3.64 2.65

ZH 0.90 1.65 3.55 0.072 3.24 3.16 2.87ZipVoice EN 0.89 2.47 3.47 0.396 3.13 1.71 1.34

ZH 0.93 1.52 3.99 0.035 4.07 3.17 3.12GLM-TTS EN 0.94 1.70 3.90 0.118 3.21 2.19 1.96

ZH 0.90 1.74 3.57 0.032 3.62 3.47 3.13CosyVoice2 EN 0.93 2.95 4.02 0.168 2.84 2.56 2.39

ZH 0.94 1.83 3.83 0.034 3.92 3.36 2.83CosyVoice3 EN 0.93 2.68 3.82 0.141 2.83 2.23 2.07

ZH 0.93 2.12 3.67 0.035 3.92 3.02 2.88MegaTTS3 EN 0.93 1.50 3.43 0.108 3.30 2.60 2.17

ZH 0.95 1.28 2.39 0.033 3.96 4.02 3.30IndexTTS2 EN 0.92 2.15 3.15 0.135 3.33 3.15 2.62

ZH 0.92 1.76 4.06 0.043 4.03 3.25 3.16FishSpeech EN 0.93 1.81 4.13 0.113 3.56 2.06 2.63

ZH 0.91 1.54 3.88 0.047 3.91 3.47 3.34VibeVoice EN 0.95 2.75 3.75 0.111 3.88 3.95 3.34

ZH 0.88 1.13 3.12 0.072 3.28 3.50 2.73F5TTS EN 0.92 2.51 3.65 0.113 3.54 2.64 2.81

ZH 0.92 1.54 3.55 0.073 3.63 3.37 2.95Average EN 0.93 2.35 3.70 0.164 3.24 2.67 2.40

Closed-Source Models

ZH 0.90 1.38 3.13 0.059 4.13 4.20 3.53gemini-2.5-pro-preview-tts EN 0.92 1.49 3.19 0.169 3.69 4.07 3.48

ZH 0.91 1.65 2.69 0.043 4.00 3.20 3.07OpanAI-tts-1-hd EN 0.92 1.82 2.60 0.119 3.82 3.71 3.43

ZH 0.93 1.43 3.83 0.030 4.14 4.00 3.56MiniMax-Speech-2.6-hd EN 0.92 1.32 3.81 0.119 3.77 3.60 2.95

ZH 0.95 3.04 4.00 0.100 3.26 1.79 2.38Elevenlabs Multilingual V2 EN 0.96 3.05 4.04 0.115 3.73 2.87 2.97

ZH 0.94 2.19 3.72 0.053 3.73 3.41 2.92Inworld-tts-1-max EN 0.92 2.19 3.74 0.114 3.69 3.95 3.13

ZH 0.94 1.99 3.86 0.106 3.86 3.06 2.46Seed-TTS2 EN 0.94 1.91 3.89 0.193 3.62 3.14 2.21

ZH 0.93 1.95 3.54 0.065 3.85 3.28 2.99Average EN 0.93 1.96 3.55 0.138 3.72 3.56 3.03
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Table 15: Evaluation results of dialog generation models across two languages. Metrics cover Acoustics
(Timbre/Reverb Consistency, Fidelity), Semantics (Content Accuracy, Prosodic Coherence), and Expressiveness
(Richness, Hierarchy). Closed-source models and open-source models are separately marked, with the best results
in bold and the second best italic. Chinese results and English results are separately marked as well, with Chinese
in black and English in red.

Acoustics Semantics Expressiveness
Models Languages Timbre(↑) Reverb(↓) Fidelity(↑) Content(↓) Prosody(↑) Richness(↑) Hierarchy(↑)

Open-Source Models

ZH 0.90 3.15 2.65 0.069 4.01 3.01 2.87ZipVoice EN 0.91 3.91 2.67 0.114 3.34 2.24 2.72

ZH 0.89 3.11 2.56 0.313 3.25 2.58 2.60MoonCast EN 0.91 3.01 2.68 0.125 3.08 2.78 2.79

ZH 0.92 3.32 3.16 0.075 3.57 3.16 3.03FireRedTTS2 EN 0.93 3.64 2.08 0.131 2.91 2.29 2.58

ZH 0.90 3.02 3.13 0.148 3.10 3.66 3.26MOSS-TTSD EN 0.91 4.07 2.64 0.239 2.47 2.75 2.71

ZH 0.90 3.26 3.32 0.106 3.48 3.74 3.34VibeVoice EN 0.91 3.91 3.38 0.125 3.66 3.78 3.39

ZH 0.92 3.31 3.94 0.061 4.01 3.69 3.82SoulXPodcast EN 0.94 3.70 3.98 0.090 4.00 3.18 3.59

ZH 0.91 3.20 3.13 0.129 3.42 3.31 3.15Average EN 0.92 3.71 3.07 0.154 3.24 2.84 2.96

Closed-Source Models

ZH 0.91 3.07 3.05 0.086 4.12 4.10 4.11Gemini-2.5-pro-preview-tts EN 0.93 3.26 2.96 0.092 4.00 4.02 3.93

ZH 0.92 2.97 2.26 0.104 3.52 3.17 3.56OpenAI-tts-1-hd) EN 0.93 2.99 2.29 0.103 3.86 3.41 3.84

ZH 0.93 4.55 3.38 0.127 3.44 2.32 3.11Elevenlabs Multilingual V2) EN 0.93 4.31 3.58 0.109 3.89 3.36 3.81

ZH 0.92 2.48 3.90 0.063 4.16 4.19 4.26Seed-TTS-Podcast EN 0.91 3.22 3.88 0.108 3.70 3.49 3.42

ZH 0.92 3.27 3.15 0.095 3.81 3.45 3.76Average EN 0.93 3.45 3.18 0.103 3.86 3.57 3.75
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Prompt for Prosody Coherence

Role: Senior Linguistic Expert & Prosody Analyst. You are an expert in assessing speech naturalness, with a hyper-
sensitivity to prosodic coherence, rhythmic hierarchy, and robotic artifacts.
Input Data:

• Target Text: The reference text script that needs to be synthesized.

• Audio Output: The speech audio generated by the TTS model (labeled as Output A).

Generation Requirements:

1. Core Task: Evaluate the audio’s naturalness by analyzing its prosodic structure and coherence against the target
text, rather than just audio quality.

2. Dimension 1 - Prosody Coherence & Flow: Assess the smoothness of the speech stream. Check for unnatural
pauses, abrupt disjoints between words/phrases, and the logical flow of intonation across sentence boundaries.

3. Dimension 2 - Rhythmic Hierarchy & Layering: Evaluate the structural stress patterns. Does the speaker
correctly emphasize content words while de-emphasizing function words? Is there a natural "melody" (intonation
contour) rather than a flat or repetitive beat?

4. Dimension 3 - Overall Naturalness: Check for presence of human-like micro-prosody (e.g., breathiness, slight
pitch variations).

5. Format: Strictly output a valid JSON object. No other text.

Scoring Guidelines (1.0–5.0, step of 0.5):

• 5.0 (Human-Parity): Indistinguishable from a professional human speaker; perfect coherence and rich prosodic
hierarchy.

• 4.0 (Natural): Very smooth and pleasant; minor prosodic flaws only noticeable to experts; good structural
layering.

• 3.0 (Acceptable): Intelligible and decent flow; but lacks depth (flat hierarchy) or contains audible TTS artifacts.

• 2.0 (Mechanical): Disjointed flow; unnatural pauses; wrong stress placement (e.g., stressing every word equally).

• 1.0 (Robotic): Completely lifeless; broken prosody; difficult to listen to.

JSON Schema:

{

"Overall_Impression": "[Brief summary of naturalness and flaws]",
"Detailed_Analysis": {

"Coherence_and_Flow": "[Critique the smoothness and connection...]",
"Hierarchy_and_Layering": "[Analyze stress patterns and intonation curves...]",
"Naturalness": "[Comments on naturalness]"

},
"Score": [Number 1.0-5.0],

}

Figure 12: Structured prompt for evaluating long-form audio’s performance in Prosody Coherence.
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Prompt for Expressive Hierarchy

Role: Senior Voice Director & Audio Engineer (Long-Form Specialist). You are an expert in long-form narration
(audiobooks, documentaries), hyper-sensitive to monotony, repetitive patterns, and lack of structural progression.
Generation Requirements:

1. Core Task: Analyze how the performance evolves over time, focusing on "Layering and Hierarchy".

2. Dimension 1 - Emotional Variation & Arc: Evaluate progression from beginning to end, distinction between
climax and exposition, and avoidance of "one-note" acting.

3. Dimension 2 - Vocal Dynamics: Check for macro/micro dynamics (volume/tempo shifts).

4. Dimension 3 - Scene Appropriateness & Structural Fit: Assess contextual adaptation to content structure and
long-term engagement.

5. Format: Strictly output a valid JSON object. No other text.

Scoring Guidelines (1.0–5.0, step of 0.5):

• 5.0 (Masterful): A journey with rich variety; no repetitive patterns; perfect for long listening.

• 4.0 (Strong): Good dynamics and clear emotional shifts; avoids obvious monotony.

• 3.0 (Acceptable but Static): Pleasant but lacks progression; risks boring the listener over time.

• 2.0 (Repetitive): Clear signs of "looping prosody"; same intonation for every sentence.

• 1.0 (Robotic): Lifeless; no dynamic range or emotional change; raw TTS-like.

JSON Schema:
{

"Overall_Impression": "[A brief summary of the long-form experience]",
"Hierarchy_Analysis": {

"Emotional_Arc": "[Describe the emotional progression...]",
"Dynamics_and_Rhythm": "[Critique the pacing and prosody...]",
"Scene_Fit": "[How well does it adapt to the structure?]"

},
"Score": [Number 1.0-5.0],
"Final_Recommendation": "[Highly Recommended / Recommended with Reservations / Not Recommended]"

}

Figure 13: Structured prompt for evaluating long-form audio performance, focusing on expressive hierarchy.
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Prompt for Expressive Richness

Role: You are a Senior Voice Director and Audio Engineer with standards equivalent to a top-tier animation studio.
Your task is to meticulously evaluate a voice recording and determine if it meets professional standards.
Evaluation Dimension: Performance & Expressiveness

• Emotional Resonance: Genuine, layered emotion vs. flat/forced.

• Character Portrayal: Believable, consistent character; tone/age/personality coherence.

• Storytelling & Immersion: Narrative flow, atmosphere, and engagement.

Exclusions: Ignore sudden stop, audio quality, timbre consistency, and pronunciation accuracy.
Scoring Guidelines (1.0–5.0):

• 5.0 (Outstanding): Richly expressive, immersive, and artistically elevated.

• 4.0 (Strong): High expressiveness, close to professional but lacks fine nuance.

• 3.0 (Adequate): Meets basic requirements; emotions may be somewhat generic.

• 2.0 (Flat): Unconvincing, weak emotional expression, clearly subpar.

• 1.0 (Mechanical): Synthetic/lifeless, no emotional color or dynamics.

JSON Schema:
{

"Overall_Impression": "A brief, one-sentence summary of the audio.",
"Expressiveness": "Detailed professional analysis of the performance dimension.",
"Expressiveness_Score": [Number between 1.0 and 5.0 in 0.5 increments],
"Final_Recommendation": "[Highly Recommended / Recommended with Reservations / Not Recommended]"

}

Figure 14: The structured prompt used for professional voice performance and expressiveness assessment.
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