Comprehensive Benchmarking of Long-Form Speech Generation in
Diverse Scenarios
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Figure 1: Overview of LFS-Bench. We propose LFS-Bench, a comprehensive benchmark designed to evaluate the
performance of long-form speech generation models. Left: We construct test sets across 17 downstream speech
scenarios, grounded in three core challenges of long-form generation: Acoustics, Semantics, and Expressiveness.
Center: Along these three challenge axes, we propose seven disentangled metrics to comprehensively assess model
performance and validate them through human alignment studies. Right: Extensive experiments show that existing
models still have substantial room for improvement in reverb consistency, prosodic coherence, and expressiveness.

Abstract fines an automated evaluation protocol with
seven metrics to provide a comprehensive, ac-
Recent advances in speech generation have en- curate, and standardized assessment; 3) Valu-
abled high-fidelity synthesis, yet systematic able Insights: Through extensive experiments,
evaluation of models under long-context con- we reveal that current models still struggle in
ditions remains largely underexplored. A com- highly expressive scenarios and exhibit a no-
prehensive evaluation benchmark for long-form table gap in consistency and hierarchy com-
speech is indispensable for two reasons: 1) ex- pared to real recordings. The project page can
isting test scenarios are often confined to lim- be found at https://1fs-bench.github.io.
ited domains, creating a significant gap with the .
diverse downstream applications; 2) existing 1 Introduction

metrics overlook critical long-text factors such

. - Recent advances in generative modeling have
as consistency and coherence, failing to gen-

eralize reliably. To this end, we propose LFS- revolutionized content creation across modali-
Bench, a comprehensive benchmark that de- ties (OpenAl, 2024; Esser et al., 2024; Guo et al.,
composes “long-form speech quality” into spe- 2025) While Large Language Models (LLMS)
cific, disentangled dimensions. LFS-Bench has have demonstrated impressive capabilities in long-
three key properties. 1) Rich speech scenarios: context generation and understanding (Chen et al.,
Focusing on long-form speech generation and 2023; Xiao et al., 2023; Bai et al., 2024), the

dialog generation, LFS-Bench covers acoustics,
semantics, and expressiveness challenges, and
consists of 1,101 samples spanning 17 common

speech community is similarly shifting focus from
sentence-level to paragraph-level synthesis (Le

speech scenarios; 2) Comprehensive evalua- et al., 2023; Shen et al., 2024). Compared to tra-
tion dimensions: Along the acoustics, seman- ditional concatenation strategies, end-to-end long-
tics, and expressiveness axes, LFS-Bench de- form TTS paradigms promise superior acoustic and


https://lfs-bench.github.io

semantic consistency, leveraging broader contex-
tual cues (Peng et al., 2025; Park et al., 2024).

Despite these advancements, the systematic eval-
uation of long-form speech remains a significant
challenge. While downstream applications involve
complex multi-speaker interactions and rich se-
mantic contexts, existing test scenarios are often
confined to limited domains or single-speaker set-
tings (Koizumi et al., 2023; Zhang et al., 2022).
This discrepancy prevents a thorough assessment
of how models handle the rich challenges inherent
in long-form generation, leaving their capabilities
in complex scenarios largely underexplored.

Furthermore, establishing an effective evalua-
tion protocol that is both scalable and accurate is
equally difficult. Existing sentence-level metrics
like Word Error Rate (WER)(Ali and Renals, 2018)
have become saturated (Chen et al., 2024b) and
correlate poorly with human perception in long-
text contexts (Minixhofer et al., 2025). Although
human listening tests are the gold standard, they
are non-scalable and costly. Recently, MLLM-
based evaluators have emerged (Chen et al., 2024a;
Manku et al., 2025), yet they typically provide
coarse-grained comparative judgments rather than
quantitative metrics, often overlooking the property
of consistency (Li et al., 2024). Consequently, the
field lacks an automated protocol aligned with the
fine-grained nuances of long-form generation.

To this end, we propose LFS-Bench, a compre-
hensive benchmark for long-form TTS models with
three core properties: 1) rich scenarios, 2) compre-
hensive evaluation, and 3) valuable insights.

First, LES-Bench is defined over two fundamen-
tal long-form TTS paradigms: long-form speech
generation and dialog generation. Starting from
three core dimensions of long-form speech, namely
acoustics, semantics, and expressiveness, LFS-
Bench constructs 1,101 test samples spanning 17
downstream scenarios, providing broad coverage
of long-form TTS applications.

Second, our framework establishes an automatic
evaluation protocol that employs a hierarchical ap-
proach to decomposing “long-form speech quality”.
Transcending the traditional focus on Fidelity and
Accuracy, we introduce novel dimensions tailored
for long-form characteristics, specifically Acous-
tic Consistency, Prosodic Coherence, and Expres-
sive Hierarchy. These metrics effectively address
the limitations of existing protocols by quantifying
temporal stability and expressive dynamics. More-
over, we conduct user studies to validate the reli-

Table 1: Comparison of speech generation benchmarks
and test datasets. Pipe. indicates availability of an
automatic evaluation pipeline, and ¥ marks that only
part of the metrics are objectively computable. * denotes
non-public data, with results estimated from the paper.

Benchmark Clips Scenario Spk-Num Avg-Word Pipe Dim.
SeedTTS-Eval 6612 1 1 19.57 3
EmergentTTS-Eval 1645 6 1 33.93 v 5
TTSDS2 60 4 1 2424 v 4
Choice of Voices 1 1 1 988 X 5
MinutesSpeech-test 1221 1 1 134 6
LibriSpeech-long 960 1 1 534.5 6
Neural TTS-eval 250 1 1 260%* X 9
MultiDialog 831 3 2 319.8 4
LFS-Bench 1101 17 1-4 228.6 v 7

ability of these automated metrics, ensuring they
serve as a scalable proxy for human perception.

Finally, through extensive experiments on LFS-
Bench, we derive critical insights detailed in Sec-
tion 5. Our empirical results reveal that while cur-
rent models rival human recordings in fidelity and
accuracy, they exhibit substantial gaps in reverb
consistency, prosodic coherence, and expressive
hierarchy. Notably, performance deteriorates in
highly expressive scenarios, underscoring the per-
sisting challenges in modeling long-term dependen-
cies and dynamic stylistic variations.

We’re open-sourcing LFS-Bench, including test
samples, and evaluation scripts with prompts. We’ll
also include more models in LFS-Bench to drive
forward the field of long-form speech generation.

2 Related Work

Long-form TTS Generating long-form speech
and dialogues presents significant challenges in
maintaining prosodic coherence, modeling long
sequences, and managing speaker transitions. To
ensure prosodic consistency, recent studies have
explored joint style modeling and cross-sentence
memory mechanisms (Guo et al., 2024a; Li et al.,
2025). Concurrently, to enhance long-sequence
modeling efficiency, researchers have introduced
compact representations via multi-resolution quan-
tization (Nishimura et al., 2024) or low frame-
rate tokenization (Peng et al., 2025), as well as
state space models to alleviate memory bottle-
necks (Park et al., 2024). Regarding speaker tran-
sitions, while early works combined autoregres-
sive (AR) and non-autoregressive (NAR) compo-
nents (Borsos et al., 2023), recent advancements
have further developed both paradigms: NAR ap-
proaches increasingly employ flow-matching tech-
niques, whereas AR models leverage speaker to-
kens to handle long-context dialogues (Ju et al.,



2025; Xie et al., 2025a). Despite these techni-
cal strides, existing metrics remain insufficient for
evaluating prosodic coherence, emotional richness,
and transition quality. To bridge this gap, LFS-
Bench introduces a unified evaluation framework
with targeted test cases and human-aligned metrics
designed to quantify these critical properties.

Evaluation for Speech Generation Models Cur-
rent TTS evaluation mainly relies on four objec-
tive metric families: signal-based metrics (Taal
et al., 2010), MOS prediction networks (Saeki
et al., 2022), distributional metrics (Minixhofer
et al.,, 2024), and accuracy metrics (Ali and
Renals, 2018). These metrics are nearly satu-
rated for recent state-of-the-art systems (Ju et al.,
2024). Follow-up benchmarks (Huang et al., 2025;
Anastassiou et al., 2024) increase difficulty via
harder texts or controllability, but remain sentence
level and are not directly suitable for long-form
speech (Clark et al., 2019). Long text test sets
like MinutesSpeech- (Nishimura et al., 2024) and
LibriSpeech-Long (Park et al., 2024) partially ad-
dress this gap, yet cover only a narrow range of sce-
narios, as shown in Table 1. Benchmarks for dialog
models also face similar issues (Ao et al., 2024).
Moreover, existing protocols rely heavily on subjec-
tive evaluations (Cambre et al., 2020; Zhang et al.,
2023), which do not scale and lack standardized
procedures. In contrast, LFS-Bench jointly covers
long-form speech and dialog generation, spans 17
scenarios, and provides comprehensive automatic
metrics aligned with humans, thereby addressing
key limitations of current evaluation practices.

3 LFS-Bench

3.1 Overview

Long-form speech generation requires multi-
dimensional evaluation to ensure immersion and
realism. For instance, in an online education sce-
nario, a generated lecture must not only preserve
timbre and acoustic environment (acoustics) but
also deliver accurate content with natural pacing
(semantics), while exhibiting dynamic variations
to sustain engagement (expressiveness). Motivated
by these requirements, we propose LFS-Bench, a
hierarchical benchmark comprising 1,101 samples
across 17 downstream applications. And as de-
tailed in Section 3.4, our evaluation protocol is
organized around three primary dimensions:
Acoustics Challenge focuses on sound quality,
environmental fidelity, and speaker identity. Hence,

we carefully curate samples from six relevant sce-
narios: customer service, podcast, chat, debate,
audiobook, and interview, and evaluate acoustic
performance based on timbre consistency, reverb
consistency, and sound fidelity.

Semantics Challenge targets correctness and
fluency to probe the upper limits of semantic mod-
eling. We derive complex test cases from five
information-dense scenarios (lesson, popular sci-
ence, presentation, seminar, and news), evaluating
them by content accuracy and prosodic coherence.

Expressiveness Challenge addresses the issues
of flat emotion and low engagement in long-form
speech. We incorporate highly expressive scenar-
ios such as drama, talk show, hosting, speech, live
streaming, and sportscast. Performance is assessed
through expressive richness (sentence-level emo-
tional impact) and expressive hierarchy (paragraph-
level expressive dynamics).

3.2 Data Collection

To provide a high-quality benchmark, we curate
the test samples from three sources: online text
corpora, online audio media, and LLM generation.
Online Text Corpora For scenarios such as au-
diobooks, drama, and news, where abundant tran-
scripts are available online, we directly construct
test sets from the web. After crawling the raw
data, we clean irrelevant content such as illegal
characters, and normalize the text into a clear and
readable format. We then employ human annota-
tors to proofread the transcripts and add speaker
labels, yielding the final curated test samples.
Online Audio Media This source constitutes
the main component of LFS-Bench. For web au-
dio data, after crawling, we first denoise the raw
audio (Wang and Tian, 2025), and then use DNS-
MOS (Reddy et al., 2021) scores to filter out low-
quality cases. After that, speaker diarization is
conducted (Zheng et al., 2023) to obtain audio
segments for each speaker. Finally, we use Sen-
seVoice (An et al., 2024) to transcribe audio clips.
Upon completion of the script processing, we per-
form manual verification to correct errors from the
previous steps and curate the final test samples.
LLM generation We use GPT-5 (OpenAl, 2025)
to augment our test set and increase the diversity of
data sources. Specifically, we first design prompts
that include scenario, topic, and task information.
Then we use them to guide the LLM to generate
high-quality test cases. All generated samples are
then checked and verified by human annotators.
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Figure 2: Overview of dataset construction and refinement. The process consists of four stages: 1) Formulating
LFS-Bench based on three core challenges; 2) Selecting 17 downstream speech scenarios aligned with these
challenges; 3) Designing a hybrid data collection pipeline; 4) Performing data refinement on the constructed dataset.

3.3 Data Refinement

To ensure the quality of curated samples, we imple-
ment a rigorous refinement pipeline. The process
begins with semantic de-duplication, where we em-
ploy GPT-5 to extract topics, keywords, and sum-
maries for each sample. These fields are concate-
nated and encoded using SentenceBERT (Reimers
and Gurevych, 2019) to identify and remove highly
similar instances based on cosine similarity. Subse-
quently, we filter for content quality by leveraging
GPT-5 to evaluate expression clarity and content
coherence, discarding any samples that fall below
predefined thresholds. To address privacy and ethi-
cal concerns, we utilize DeepSeek V3.2 (Liu et al.,
2024a) with a chain-of-thought (Wei et al., 2022)
procedure to detect potential leaks, revise sensitive
content, and eliminate samples posing social or eth-
ical risks. Finally, we conduct a manual review to
purge remaining low-quality samples and replen-
ish the dataset, ultimately yielding 1,101 samples
that cover three core challenges and span 17 down-
stream scenarios, as shown in the left side of Fig. 1.

3.4 Evaluation Metrics

We disentangle the challenges into seven objective
metrics to comprehensively assess the performance
of TTS models. More details in Appendix C.
Timbre Consistency. Compared with prior
work that evaluates zero-shot capability using
speaker similarity, we directly measure within-
utterance timbre consistency to assess a model’s
ability to maintain or switch speaker identity. For

single-speaker long-form speech w, we apply a
sliding window over the waveform and extract a
speaker embedding for each window, yielding a se-
quence {e;}!" ;, where n is the number of windows.
We then compute the cosine similarity for every
pair of distinct embeddings and take the average of
the resulting similarity sequence {sim;;};;_; ;.;
as the measure of timbre consistency. For dialog,
we first use forced alignment (McAuliffe et al.,
2017) to obtain segments of each speaker. The fi-
nal metric is obtained by averaging the consistency
scores of individual speakers.

Reverb Consistency. We assess whether syn-
thesized audio maintains a stable acoustic environ-
ment by measuring the consistency of reverbera-
tion over time. For a generated utterance w, we
apply a sliding window over the waveform and
compute the speech-to-reverberation modulation
energy ratio (SRMR) for each window, obtaining
a sequence of reverberation scores {r;}"" ;. We
then compute the standard deviation of this se-
quence, which serves as our reverb consistency
metric; lower variance indicates a more consistent
reverberation pattern across the utterance.

Sound Fidelity. We evaluate the perceptual qual-
ity and clarity of the generated speech using the
Perceptual Evaluation of Speech Quality (PESQ)
metric. Given that standard PESQ requires a refer-
ence signal unavailable in our setting, we employ
SQUIM-PESQ to perform non-intrusive, reference-
free evaluation for the synthesized audio.

Content Accuracy. Faithful content rendering



is a cornerstone of robust TTS systems. To inves-
tigate the impact of long-sequence modeling on
content fidelity, we employ an ASR-based evalu-
ation, calculating the Word Error Rate (Character
Error Rate for Chinese) between the transcripts of
the synthesized audio and the ground truth text.
Prosodic Coherence. While content accuracy
ensures lexical correctness, prosodic coherence
evaluates the naturalness of delivery. This met-
ric focuses on pauses, speaking rate, and the con-
sistency of overall prosody to capture the natu-
ralness of generated speech. LFS-Bench lever-
ages SpeechJudge (Zhang et al., 2025b), a scor-
ing model fine-tuned from Qwen2.5-Omni-7B (Xu
et al., 2025a). We refine the input prompt to
strengthen the model’s sensitivity to prosodic con-
sistency in long-form contexts, utilizing the result-
ing scalar score (1-5) as our metric for coherence.
Expressive Richness. In long-form synthesis,
expressiveness becomes crucial, as monotonous de-
livery fails to sustain user engagement or support
immersive experiences. To address this need, LFS-
Bench evaluates expressive richness along three
dimensions: emotional resonance, character por-
trayal, and storytelling. Following EmergentTTS-
Eval (Manku et al., 2025), we employ LALMs as
evaluators using a comprehensive prompt to score
audio on a 1-5 scale. To ensure fine-grained assess-
ment, we segment inputs into 10-second intervals
and calculate the average score across all segments.
Expressive Hierarchy. Beyond sentence-level
expressiveness, paragraph-level expressive hierar-
chy is a defining characteristic of long-form speech.
We employ LALMs to evaluate this attribute on
a scale of 1 to 5, designing prompts that specifi-
cally target emotional variation, vocal dynamics,
and scene appropriateness. Crucially, we evaluate
the full utterance rather than via segmentation to
preserve the integrity of the narrative flow.

3.5 Human Perception Alignment Test

To further validate the effectiveness of our evalua-
tion protocol, we conduct a subjective assessment
in which human raters score a randomly selected
subset of the test data. Additional implementation
details and results are provided in the Appendix D.

Prosody Evaluation. We randomly sample 50
pairs of audio clips, each synthesized from identical
text by different models, and conduct a subjective
preference test with 10 human evaluators. For each
pair (A, B), raters assess the comparative prosodic
coherence on a 5-point scale ranging from -2 to 2.

The human preference score is defined as:

N
1
Spref(Av B) = N E Siy (D
=1

where s; denotes the score assigned by the i-th
rater, and N represents the total number of raters.
We compute the Spearman Rank Correlation Coef-
ficient (SRCC) between human preference scores
and the differential of our metric. The SRCC of
0.82 shows that our metric effectively captures the
perceived prosodic coherence of long-form speech.

Expressiveness Evaluation. We randomly sam-
ple 200 audio clips across all models and tasks,
recruiting 10 human evaluators to score each sam-
ple, strictly adhering to the same expressiveness
prompts used for the LALM evaluation. In parallel,
we benchmark three MOS prediction networks and
six LALMs by computing the correlation between
their predicted scores and the human Mean Opin-
ion Scores (MOS). Finally, we select Gemini3-Pro
as our primary evaluator, due to its highest align-
ment with human judgment, yielding SRCC scores
of 0.71 for expressive richness and 0.62 for expres-
sive hierarchy. We also validate the stability of
Gemini 3 Pro through independent repeated trials.
More results are detailed in Appendix D.4.

4 Experiments

4.1 Settings

Model Evaluated For single-speaker long-
form speech, we evaluate ten open-source mod-
els: ZipVoice (Zhu et al.,, 2025b), Spark-
TTS (Wang et al., 2025), CosyVoice2-0.5B (Du
et al., 2024), CosyVoice3-0.5B (Du et al., 2025),
GLM-TTS (Cui et al., 2025), MegaTTS3 (Jiang
et al., 2025), IndexTTS2 (Zhou et al., 2025b),
FishSpeech-1.5 (Liao et al., 2024), FSTTS (Chen
et al., 2024c), and VibeVoice (Peng et al., 2025).
And we evaluate six closed-source flagship sys-
tems: Gemini-2.5-pro-preview-tts, OpenAl-tts-
1-hd, ElevenlLabs Multilingual V2, Minimax-
speech-02-hd (Zhang et al., 2025a), InWorld-
TTS-1-max (Atamanenko et al., 2025), and Seed-
TTS2 (Anastassiou et al., 2024). In the dia-
logue generation setting, we select six open-source
models capable of long-form synthesis—Zip Voice-
Dialog (Zhu et al., 2025a), MoonCast (Ju et al.,
2025), MOSS-TTSD (Zhao et al., 2025), Fir-
eRedTTS2 (Xie et al., 2025b), VibeVoice, and
SoulX-Podcast (Xie et al., 2025a)—and compare



Table 2: Evaluation results of long-form TTS models across multi-dimensional metrics. Metrics cover Acoustics
(Timbre/Reverb Consistency, Fidelity), Semantics (Content Accuracy, Prosodic Coherence), and Expressiveness
(Richness, Hierarchy). CER and WER apply to Chinese and English, respectively. Closed-source models and
open-source models is separately marked, with the best results in bold and the second best underlined.

| Acoustics | Semantics | Expressiveness
Model | Timbre(t) Reverb(]) Sound Fidelity() | CER/WER(]) Prosody(t) | Richness(t) Hierarchy(f)
Open-Source Models

Cosy Voice-2 0.92+0.018 2.35£0.78 3.80+0.27 0.032/0.168 3.23£1.01 3.02+0.68 2.76+0.88
CosyVoice-3 0.94+0.008 2.26+0.59 3.83+0.10 0.034/0.141 3.31£0.71 2.80£0.70 2.45+0.75
FishSpeech 0.93+£0.014  1.79£0.65 4.10+0.09 0.043/0.113 3.8040.86 2.66+0.78 2.90+0.74
F5TTS 0.90£0.022  1.82+0.77 3.39+0.33 0.072/0.113 3.41£0.99 3.07+0.63 2.77+£0.84
GLM-TTS 0.94+0.010 1.62+0.61 3.95+0.13 0.035/0.118 3.64+0.87 2.68+0.71 2.54+0.88
IndexTTS-2 0.944+0.008 1.724+0.53 2.77+£0.41 0.033/0.135 3.64+0.52 3.59+0.72 2.96+0.81
MegaTTS-3 0.93+£0.008 1.81£0.45 3.55+0.19 0.035/0.108 3.61£0.84 2.81£0.55 2.53+0.63
SparkTTS 0.93£0.033  1.79£1.70 3.59+0.40 0.329/0.240 2.58+1.24 3.4740.58 2.384+0.83
Vibe Voice 0.93+£0.024 2.15£0.88 3.82+0.42 0.047/0.111 3.90+0.79 3.714+0.58 3.34+0.88
ZipVoice 0.90£0.011  2.06£1.08 3.51£0.19 0.072/0.396 3.19£1.11 2.44+0.85 2.11£1.05

Average 0.93 1.95 3.63 0.073/0.164 3.43 3.03 2.67

Closed-Source models

Elevenlabs Multilingual V2 | 0.96+0.008 3.05+0.59 4.02+0.11 0.100/0.115 3.50+0.73 2.33£0.74 2.68+0.81
Gemini-2.5-pro-preview-tts | 0.91£0.018  1.444-0.50 3.16+0.36 0.058/0.169 3.91£0.72 4.14+0.65 3.51+0.84
Inworld-TTS-1-max 0.93+£0.025 2.1940.64 3.73+0.17 0.053/0.113 3.71£0.51 3.68+0.86 3.03+0.92
Minimax-Speech-02-hd 0.93£0.010 1.38+0.35 3.82+0.09 0.032/0.119 3.95+0.73 3.80+0.44 3.26+£0.79
OpenAl-tts-01-hd 0.92+0.011  1.74£0.42 2.68+0.12 0.043/0.119 3.91£0.52 3.46+0.62 3.25+0.81
SeedTTS-2 0.94+0.022 1.95+0.74 3.88+0.18 0.106/0.193 3.74+0.44 3.10+0.80 2.34+0.65

Average 0.93 1.96 3.55 0.065/70.138 3.79 3.42 3.01

Real Speech ‘ 0.96 1.91 3.62 ‘ 0.070/0.074 4.04 ‘ 4.35 3.94

them with four closed-source baselines: Gemini-
2.5-pro-preview-tts, OpenAl-tts-1-hd, ElevenLabs
Multilingual V2, and SeedTTS-Podcast.
Evaluation Models For the timbre consistency
evaluation, we use WavLM TDCNN! to extract
speaker embeddings, and perform forced align-
ment with Paraformer® on Chinese data and Whis-
perX (Bain et al., 2023) on English data. For WER
computation, we adopt FunASR Nano® as the tran-
scription model. For all expressiveness-related
metrics, we use Gemini3-pro (Google DeepMind,
2025) with prompt enhancement as the evaluator.

4.2 Evaluation from Different Perspectives

Per-Dimension Evaluation We demonstrate LFS-
Bench scores across all dimensions following the
evaluation protocol outlined in Section 3.4, with
results summarized in Tables 2 and 3. Addition-
ally, we incorporate two reference baselines: Real
Speech and Real Dialogue, which are derived from
the source dataset in Section 3.2, serving as the
topological upper bound for audio quality.
Per-Scenario Evaluation We evaluate the long-
form speech and dialog generation models across

"https://github.com/microsoft/UniSpeech/tree/
main/downstreams/speaker_verification

2https://modelscope.cn/models/iic/speech_
timestamp_prediction-vi-16k-offline

3https://huggingface.co/FunAudioLLM/
Fun-ASR-Nano-2512

three core categories spanning 17 different scenar-
ios, and then calculate their performance via the
evaluation protocol. Fig. 3 visualizes the evaluation
results of each model in terms of three categories.
Evaluations On Generated Length We evalu-
ate five representative models (MegaTTS3, F5TTS,
Cosyvoice2, SparkTTS, and VibeVoice) across in-
creasing input lengths among 100 samples in three
core scenarios (Acoustics, Semantics, and Expres-
siveness). The results are shown in Fig 4.

5 Insights and Discussions

5.1 Observations

Gap to Ground-Truth Audio As shown in Ta-
bles 2 and 3, among the evaluated systems,
VibeVoice and SoulX-Podcast emerge as the
strongest open-source models, while Minimax-
Speech-02-hd and Gemini-2.5-pro-preview-tts
lead their proprietary counterparts. We also ob-
serve that, although SOTA open-source models al-
ready match or even surpass the best proprietary
systems on several evaluation dimensions, Propri-
etary models still exhibit consistently stronger over-
all performance than open-source models for long-
form speech generation. However, benchmarking
against real recordings reveals persistent and sys-
tematic gaps. For long-form synthesized speech,
even the best-performing models remain below hu-
man speech in overall expressiveness: the closed-
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Table 3: Results of dialogue generation models across LFS-Bench’s metrics. The performance of closed-source
models and open-source models is separately marked, with the best results in bold and the second best underlined.

| Acoustics | Semantics | Expressiveness
Model \ Timbre(t) Reverb(]{) Sound Fidelity(1) \ CER/WER(]) Prosody(1) \ Richness(1) Hierarchy(1)
Open-Source Models
FireRedTTS-2 0.93+0.017  3.48+1.06 2.62+0.69 0.075/0.131 3.24+1.04 2.724+0.75 2.81+0.97
MoonCast 0.90+0.022  3.06+1.84 2.624+0.37 0.313/0.125 3.16+1.18 2.68+0.68 2.70+0.99
MOSS-TTSD 0.91+£0.028 3.55+1.16 2.89+0.55 0.148/0.239 2.79+1.14 3.21+0.79 2.99+1.06
SoulX-Podcast 0.93+0.016 3.51+0.80 3.96+0.09 0.061 / 0.090 4.01+0.78 3.4440.69 3.71+0.81
VibeVoice 0.91+£0.028 3.59+0.85 3.354+0.72 0.106/0.125 3.57+1.05 3.76+0.63 3.37+0.83
ZipVoice-Dialog 0.91+£0.021  3.53+0.85 2.66+0.24 0.069/0.114 3.67+0.89 2.62+0.60 2.80+0.88
Average 0.92 3.45 3.02 0.129/0.137 3.41 3.07 3.06
Closed-Source models
Elevenlabs Multilingual V2 | 0.93+0.016 4.43+1.01 3.48+0.44 0.127/0.109 3.67+0.78 2.84+0.79 3.46+0.87
Gemini-2.5-pro-preview-tts | 0.924+0.017  3.1740.68 3.01+£0.24 0.086/0.092 4.06+0.39 4.06+0.48 4.02+0.68
OpenAl-tts-1-hd 0.93+0.013 2.98+0.63 2.28+0.17 0.104/0.103 3.69+0.62 3.2940.75 3.70+0.88
SeedTTS-Podcast 0.91+£0.017  2.85+0.78 3.89+0.17 0.063/0.108 3.93+0.46 3.84+0.72 3.84+0.88
Average 0.92 3.36 3.17 0.095/0.103 3.83 3.51 3.76
Real Dialogue | 0.95 2.73 2.94 | 0.050/0.137 3.95 | 442 4.17

source average lags behind real speech by nearly
one MOS point in richness and over half a point
in hierarchy. A similar pattern holds in dialog sce-
narios, where closed-source systems obtain higher
expressiveness, but still fall short of the natural ex-
pressivity implied by real dialogue. In acoustic met-
rics, synthesized speech approaches real recordings
in Fidelity, but long-form outputs show a deficit in
Timbre Consistency. For dialog generation, the
marked gap in Reverb Consistency (3.36 vs. 2.73)
underscores a core challenge: sustaining global
acoustic consistency across multiple speakers. In
terms of Semantics, current models achieve Con-
tent Accuracy comparable to real speech, demon-
strating strong capability in pronunciation. Never-
theless, deficiencies in prosodic coherence persist,
limiting the naturalness of the synthesized audio.
Impact of Scenarios. As illustrated in Fig-
ure 3, downstream scenarios significantly impact
generation performance. Acoustic challenge sce-
narios present distinct difficulties, particularly in
maintaining acoustic field consistency. This strug-
gle likely stems from frequent speaker transitions
that disrupt reverberation unity, also causing mi-
nor fidelity degradation. Notably, however, tim-
bre consistency remains stable, demonstrating the
robustness of current models in this dimension.
For semantic-dominated scenarios, linguistic com-
plexity in semantic-dominated scenarios does not
compromise content accuracy, thanks to robust
text normalization. However, it poses substantial
challenges to prosody modeling, indicating a need
for improved comprehension of intricate syntactic
structures. An intriguing finding emerges in expres-
siveness settings. Here, all models exhibit perfor-

mance degradation across nearly all metrics, partic-
ularly in Expressive Richness. Theoretically, these
scenarios should represent a higher upper bound
for expressiveness. Consequently, this counter-
intuitive performance suggests that models may
lack effective training on expressive data. Further-
more, it highlights the substantial gap remaining
in achieving immersive and expressive generation.
More data support, experimental results, and de-
tailed analysis can be found in Appendix G.2.

5.2 Discussions

AR v.s. NAR In long-form TTS, the choice be-
tween AR and NAR paradigms centers on the trade-
off between expressiveness and robustness. NAR
models, leveraging parallel generation mechanisms,
demonstrate superior robustness and efficiency in
long-text synthesis (Ren et al., 2020). However,
they tend to produce over-smoothed rhythms, of-
ten failing to capture the vocal dynamics and emo-
tional nuances required for extended narration. As
observed in Table 2 and 3, FSTTS, despite being
the top-performing NAR model, lags significantly
behind most AR counterparts in expressive hier-
archy. Similarly, ZipVoice-Dialog ranks among
the lowest in expressiveness within the dialogue
category. Conversely, AR models, typically built
upon language model backbones, excel in prosody
modeling but suffer from error propagation in long-
form scenarios. While they achieve superior ex-
pressiveness, they exhibit a lower bound on Con-
tent Accuracy; for instance, both SparkTTS and
MoonCast show suboptimal performance in this
dimension. Furthermore, as illustrated in Figure 4,
SparkTTS suffers from a substantial decline in con-
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Figure 4: Results on Sequence Length. The horizontal
axis represents the number of sentences in the text.

tent accuracy as sequence length increases, whereas
NAR models maintain stability without significant
degradation. Consequently, we propose that future
long-form TTS architectures should evolve beyond
this binary choice toward a Coarse-to-Fine Archi-
tecture (Kharitonov et al., 2023; Ju et al., 2024),
thereby effectively reconciling long-range semantic
coherence with local generation stability.

Data Quality v.s. Data Quantity While scaling
laws have advanced speech synthesis by leveraging
more data and bigger parameters (Du et al., 2025),
our analysis suggests that relying solely on main-
stream datasets presents three critical impediments
to long-form audio generation: 1) Fragmentation
in open-source data (Chen et al., 2021) induces a
short-form bias that compromises discourse coher-
ence. For instance, SparkTTS is trained on VoxBox,
a dataset characterized by an average segment du-
ration of less than 10 seconds. Consequently, the
model exhibits significant degradation in both con-
tent accuracy and prosodic coherence as the gen-
eration length extends, as illustrated in Figure 4;
2) Acoustic instability in web-crawled data (He
et al., 2024), such as variable noise and recording
conditions, triggers acoustic drift. For example,

CosyVoice3 utilizes extensive in-the-wild data for
training. As a result, it significantly lags behind
other models in reverb consistency, as shown in
Table 2; and 3) The averaging effect of scaling
enhances generalization but homogenizes expres-
siveness. As shown in Table 2, flagship models
such as GLM-TTS and FishSpeech excel in acous-
tic metrics. However, they underperform in the
expressiveness dimension despite their large scale.
Consequently, they fail to capture the dynamic nu-
ances required for narration. Therefore, the path
forward requires a strategic shift towards priori-
tizing data quality and temporal continuity over
raw quantity. We advocate for the adoption of
curriculum-learning strategies (Wang et al., 2021)
that progressively transition from sentence-level
to paragraph-level training. By leveraging high-
fidelity, long-context recordings, future models can
more effectively capture the long-range dependen-
cies essential for coherent and expressive narration.

6 Conclusion

In this work, we present LFS-Bench, a holis-
tic benchmark tailored for evaluating long-form
TTS models. LFS-Bench addresses three core
challenges in long-form generation, encompass-
ing 1,101 carefully curated instances across 17
downstream scenarios. To facilitate precise and
automatic assessment, we propose a disentangled,
human-aligned evaluation protocol featuring seven
complementary metric dimensions. Through exten-
sive benchmarking of over 20 models, we provide
an in-depth analysis of current capabilities and limi-
tations from the perspectives of model architectures
as well as training data and strategy. We envision
LFS-Bench as a standardized testbed for future re-
search, propelling the development of more robust
and immersive long-form speech synthesis.



Limitations

We identify three limitations in this work. First,
the linguistic scope of LFS-Bench is currently
restricted to Chinese and English, leaving low-
resource languages and diverse dialects or accents
underexplored. Second, our investigation into se-
mantics remains preliminary; while LES-Bench’s
evaluation metrics prioritize acoustic coherence,
we lack a robust automated framework to assess
emotional and stylistic transitions grounded in deep
semantic understanding of long-form text. Finally,
the prompt speech utilized in our experiments is
derived from only 20 speakers from open-source
datasets. This limited speaker diversity may in-
troduce evaluation bias, and we encourage the re-
search community to contribute additional data
to facilitate a more comprehensive assessment of
model generalization.

Ethical considerations

Although this work itself raises no immediate ethi-
cal concerns, two potential risks must be addressed
when applying our benchmark. First, when utiliz-
ing our benchmark for evaluation, users must en-
sure that the prompt speech does not infringe upon
the rights of the original voice actors. The use of
audio from unverified sources or those restricted by
regulations is strictly prohibited. Second, while our
objective is to enhance the holistic performance of
long-form synthesis, practitioners must ensure that
models trained or evaluated using our methods are
not deployed for generating disinformation, such
as fabricated news reports or unauthorized politi-
cal speeches. To mitigate these risks, we intend
to implement strict usage guidelines upon open-
sourcing the benchmark to prevent unethical and
unauthorized applications.
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Appendix Contents

The Appendix is structured as follows:

* Section A: Details of dataset construction,
including the detailed explanation of scenar-
ios as well as the complete process of data
collection and refinement.

¢ Section B: Statistics of LFS-Bench.
¢ Section C: Details of Evaluation Protocols.

¢ Section D: Details of the validation of human
alignment and the user study.

* Section E: The details of the experiment’s
setting.

* Section F: Ablation studies and experiments
related to multi-speaker dialogue evaluation.

* Section G: More reuslts and analysis of the
experiments.

¢ Section H: Limitations and future works.

* Section I: Potential social impact of LFS-
Bench.

A Details of LFS-Bench’s Construction

A.1 Explanation of Scenarios

LFS-Bench systematically categorizes the chal-
lenges inherent in current long-form speech gen-
eration into three primary dimensions: Acoustics,
Semantics, and Expressiveness. To facilitate a
more fine-grained and precise assessment, we cu-
rate a dataset of 1,101 audio samples aligned with
these dimensions, encompassing 17 downstream
scenarios such as audiobooks, podcasts, talk shows,
and news broadcasting. In the following section,
we comprehensively detail the audio scenarios and
data selection criteria associated with each chal-
lenge category.

Scenarios for Acoustics Challenges

In the context of long-form TTS and dialogue gen-
eration tasks, the primary user concerns regarding
acoustic performance are categorized as follows:

* Audio Quality: As a fundamental require-
ment, the generated audio must be devoid of
background noise and electronic artifacts, en-
suring high fidelity and clear auditory percep-
tion for the user.
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* Timbre Consistency: In single-speaker set-
tings, the speaker’s timbre must remain per-
ceptually consistent throughout the sequence,
analogous to identity preservation in video
generation tasks. In multi-speaker dialog sce-
narios, accurate speaker transitions are criti-
cal, requiring precise alignment between the
dialogue script and the corresponding speaker
identities.

* Acoustic Environment Consistency: The
ability to maintain a stable sound field is a
core capability in long-form speech gener-
ation. This requires unity across acoustic
dimensions, such as the recording environ-
ment and sound imaging. Furthermore, in
multi-speaker contexts, ensuring that differ-
ent speakers appear to share a unified acoustic
scene is a crucial objective.

Based on the above basic requirements, we select
six audio downstream scenarios to construct test
cases related to the acoustic dimension, which are
specifically introduced as follows.

Customer Service Widely deployed in e-
commerce, Al agents frequently deliver lengthy
responses detailing policies and products. This
scenario demands high-fidelity, artifact-free audio
to maintain professional credibility and ensure a
trustworthy user experience.

Audiobooks As a quintessential long-form sce-
nario, audiobooks demand rigorous acoustic consis-
tency. The synthesis must maintain timbre stability
to mitigate "speaker drift," preserve a stationary
acoustic environment to ensure immersion, and
guarantee high-fidelity quality for prolonged listen-
ing comfort.

Podcasts This scenario focuses on multi-turn
dialogue generation and natural interaction. Char-
acterized by an informal or semi-formal conver-
sational style, this domain places relatively lower
demands on dramatic expressiveness; however, it
imposes strict requirements on turn-taking tran-
sitions. Consequently, this scenario necessitates
that TTS models not only execute accurate speaker
switching but also synthesize appropriate and sta-
ble reverberation to reconstruct an authentic and
vivid conversational atmosphere.

Chat, Debate, and Interview While lacking di-
rect commercial applications, these real-world sce-
narios serve as benchmarks for acoustic modeling
limits. The frequent speaker transitions inherent in



these domains pose significant challenges to synthe-
sis systems. Furthermore, the associated complex
acoustic environments introduce additional layers
of difficulty regarding background noise and chan-
nel variability.

Scenarios for Semantics Challenges

In the semantic dimension, long-form speech gen-
eration is categorized into two sub-dimensions: ac-
curacy and naturalness.

* Content Accuracy: Evaluates the alignment
between the generated speech and the input
text. In long-sequence generation, this met-
ric primarily assesses the model’s robustness
against omissions, repetitions, and hallucina-
tions, ensuring high content fidelity.

* Prosodic Coherence: Evaluates the consis-
tency between prosodic structure and seman-
tic logic. Beyond natural pausing, this in-
cludes the appropriate handling of stress and
intonation, ensuring a fluent rhythm at the
paragraph level and avoiding mechanical or
disjointed delivery.

To rigorously evaluate model performance regard-
ing semantic challenges, we construct test cases
across five downstream scenarios, specifically tar-
geting the two aforementioned dimensions.

News and Popular Science In these scenarios,
content correctness is paramount, as users exhibit
minimal tolerance for semantic deviations. Con-
sequently, we curate instances featuring linguis-
tic complexity, challenging pronunciations, and
domain-specific knowledge to comprehensively as-
sess model robustness.

Lesson, Seminar, and Presentation Beyond
basic accuracy, these scenarios impose higher de-
mands on naturalness. Speakers are expected to
enhance auditory perception through appropriate
stress and rhythmic cadence. Therefore, in addition
to content complexity, we incorporated colloquial
expressions and diverse prosodic structures to fur-
ther evaluate the model’s prosodic coherence.

Scenarios for Expressiveness Challenges

Immersion and high expressiveness are the ultimate
goals of audio synthesis. For long-form generation,
given its temporal complexity, we decompose ex-
pressiveness into Richness and Hierarchy.

* Expressive Richness: Evaluates the overall
expressive quality through the lenses of emo-
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tional resonance, character portrayal, and sto-
rytelling. Similar to sentence-level synthesis,
this metric primarily focuses on the **average
magnitude** of expressiveness maintained
throughout the entire audio sequence.

* Expressive Hierarchy: Represents the fun-
damental distinction between paragraph-level
and sentence-level generation. The extended
context necessitates a focus on dynamic varia-
tions (e.g., shifts in emotion and volume) and
the alignment between the acoustic evolution
and the semantic scenario.

Guided by these evaluation dimensions, we
curate test cases across six highly expressive
downstream scenarios to rigorously probe the up-
per boundaries of model capabilities within LFS-
Bench.

Sportcast and Live Streaming: These scenar-
ios predominantly challenge Expressive Richness.
Characterized by sustained high-intensity delivery
and emotional saturation, they demand that the
model maintain a consistently elevated energy level
to match the fast-paced nature of the content.

Speech, Host, Talkshow, and Drama: These
domains necessitate a synergy of both Richness
and Hierarchy. Beyond high emotional fidelity,
they require sophisticated control over dynamic
evolution, such as tension building in drama or
rhythmic variation in hosting, to ensure the acoustic
delivery aligns seamlessly with the narrative arc.

A.2 Details of Data Collection

In this section, we provide further elaboration on
the data sources and processing pipeline of LFS-
Bench.

Online Text Corpora

For the Audiobook, News, Drama, and Host scenar-
ios, we harvest long-form texts from diverse online
resources, spanning classic literature, web novels,
and TouTiao*. Following data acquisition via OCR
or web crawling, we employ the clean-text? li-
brary to sanitize the raw corpus by removing arti-
facts such as URLSs, emojis, and garbled characters.
Subsequently, human annotators conduct rigorous
quality assurance and enrich the dataset with meta-
data labels for scenario, topic, and speaker identity.

4https: //app.toutiao.com/news_article/
Shttps://pypi.org/project/clean-text/


https://app.toutiao.com/news_article/
https://pypi.org/project/clean-text/

Online Audio Media

We extensively utilize online audio materials across
various scenarios, with data sources including
YouTube®, Bilibili’, Spotify®, RedNote’, and Ap-
ple Podcasts!®. First, we crawl audio materials
tailored to our target scenarios from these plat-
forms. Subsequently, we denoise the raw audio
using Zipenhancer (Wang and Tian, 2025) to en-
sure processing accuracy. After obtaining cleaner
data, we filter out samples with low expressiveness
and quality based on a DNS-MOS (Reddy et al.,
2021) threshold of 3.5. We then perform speaker
diarization using 3D-Speaker (Zheng et al., 2023)
and transcribed the resulting audio segments via
SenseVoice-Small'!. Finally, human annotators
are employed to proofread the machine-generated
transcripts against the ground truth and update the
metadata labels.

LLM Generation

In scenarios such as chat, presentations, and cus-
tomer service, we leverage GPT-5 (OpenAl, 2025)
to facilitate the generation of high-quality test cases.
Specifically, we designe sophisticated prompts to
guide the LLM in producing structured content
that aligns with specific scenarios and topics while
maintaining a certain level of generation complex-
ity. Figure 5 illustrates a set of prompts used for
generating presentation topics for computer sci-
ence students. These structured prompts serve as
customizable templates, allowing users to adapt
them for generating diverse long-form data. After
LLM generation, the generated content is mutually
proofread by annotators.

We recruit three undergraduate students for data
annotation and verification, compensated at a rate
of $0.20 per instance. To ensure quality, all data
samples are double-checked. The total expenditure
for the data collection process amount to $220.

A.3 Details of Data Refinement

Semantic De-duplication

To ensure data diversity, we perform topic-level
deduplication on both crawled and generated test
instances. Specifically, we utilized GPT-5 to extract

®https://www.youtube.com

"https://www.bilibili.com

8https://open.spotify.com/

’https://www.xiaohongshu.com/

Ohttps://podcasts.apple.com/

11https://huggingface.co/FunAudioLLM/
SenseVoiceSmall
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topics, keywords, and summaries from each long-
text instance. These elements are concatenated
and encoded into embeddings using Sentence-
BERT'? (Reimers and Gurevych, 2019). We then
filter out semantically redundant samples based on
a cosine similarity threshold of 0.8 and replenish
the dataset via LLM-based generation.

Quality Evaluation

We further employ GPT-5 to assess the quality of
the de-duplicated samples. Specifically, we de-
sign prompts to evaluate textual expressiveness and
content consistency, guiding the LLM to rate the
suitability of each instance for long-form speech
generation on a scale of 1 to 5. Only samples with
recommendation scores exceeding 2 are retained.
The specific prompt used for this quality assess-
ment is in Figure 6.

Privacy and Ethical Filtering

To ensure the safety and anonymity of our dataset,
we employ DeepSeek V3.2 (Liu et al., 2024a) to
conduct a rigorous privacy and ethical assessment.
Specifically, we design a prompt incorporating
Chain-of-Thought (CoT) (Wei et al., 2022) reason-
ing to guide the model through a two-step analysis:

1. Selective PII Anonymization: The model
is instructed to specifically identify and
anonymize the names of private individu-
als (non-public figures). While the names of
celebrities or public entities are retained to
preserve contextual integrity, the names of
ordinary citizens are replaced with generic
placeholders or synthetic alternatives.

Ethical Risk Assessment: The model then
scrutinizes the content for social and ethical
risks, including hate speech, violence, sexual
explicitness, and bias.

Based on this analysis, samples containing toxic
content are discarded, while those with minor sen-
sitivity issues are revised. The specific prompt used
for this filtering is presented in Figure 7.

Manual Review

Following the automated filtering pipelines, we
implement a three-stage human-in-the-loop review
process to finalize the dataset. Expert annotators
execute the following operations:

12https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2
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Prompt for generating structured presentation data

You are an expert computer science professor and content creator. Your task is to generate a high-quality, long-form
presentation script on the topic: [Insert Topic Here].
Generation Requirements: 1. Complexity: The content must be academically rigorous, suitable for computer science
students. Include technical terminology and logical reasoning. 2. Structure: The speech should be coherent but
segmented into logical paragraphs. 3. Format: You must strictly output a valid JSON object without any Markdown
formatting.
JSON Schema:
{
"content": [
{
"speaker": "Speakerl",
"text": "The first paragraph of the speech..."

"speaker": "Speakerl",
"text": "The second paragraph of the speech..."
}
]

"num_speakers": 1,
"theme": "[Insert Topic Here]",
"source": "LLM Generation",

"TLDR": "A one-sentence summary of the presentation."

Figure 5: Prompt template used for generating presentation topics for computer science students.

1. Harmless Placeholder Infilling: For samples  additional voice profiles on our benchmark, users
that underwent privacy anonymization, the  must strictly adhere to the specific licenses associ-
automated generic tags (e.g., [NAME], [LOC])  ated with those assets. Furthermore, the complete
are replaced with specific but fictitious entities.  codebase for data processing and evaluation will be
This step ensures the text remains natural and ~ made publicly available on our GitHub repository.
grammatically fluid while strictly maintaining

the harmlessness and anonymity. B Statistics of LFS-Bench

. . B.1 Categorical Statistics
2. Residual Error Purging: Annotators then

scrutinize the dataset to identify subtle logical
inconsistencies, formatting errors, or context
mismatches that might have evaded the auto-
mated filters. Samples deemed substandard or
unnatural are strictly discarded.

We present a comprehensive statistical analy-
sis of the 1,101 samples in LFS-Bench across
five key dimensions: language (Chinese/English),
speaker configuration (single/dual/multi-speaker),
core challenges (Acoustics, Semantics, Expressive-
ness), scenarios, and content topics, as illustrated
3. Dataset Replenishment: To compensate for  in Figure 8. As observed, LFS-Bench maintains a
the discarded samples and maintain the vol-  strictly balanced language ratio, comprising 49.3%
ume, new instances are constructed. These  Chinese and 50.7% English samples. Regarding
replenished samples undergo the same pro-  speaker configuration, while the dataset primarily
cess before being added to the final pool. focuses on single-speaker long-form speech and
dual-speaker dialogue, we explicitly include 101

Five undergraduate students are enlisted for this multi-speaker samples (involving 3 or 4 speakers)
manual review, receiving a compensation of $0.30  to facilitate the evaluation of multi-talker genera-
per instance. The cumulative expenditure for the  tion capabilities. Furthermore, the dataset exhibits
data collection process totaled $330. a relatively even distribution across the three core
challenges, with the Acoustics challenge account-
ing for the largest proportion at 34.5%. We also
The test set will be released on Hugging Face under  quantify the sample distribution across 17 specific
the CC BY-NC-SA 4.0 license, allowing for free ~ downstream scenarios and generate a word cloud
non-commercial use. For evaluations involving  to visualize the topic diversity. This balanced sce-

A.4 Instructions for Use
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Prompt for the evaluation of long-form instances

You are an expert linguist and data quality evaluator. Your task is to assess the suitability of the following text sample
for long-form speech generation.

Please evaluate the text based on the following two criteria:

1. Textual Expressiveness: Assess the fluency, naturalness, and rhetorical quality of the text. Is the language vivid and
rhythmically suitable for long-duration speech synthesis?

2. Content Consistency: Assess the logical coherence and semantic stability of the text. Is the narrative or argument
consistent throughout without contradictions or abrupt topic shifts?

Rate each criterion on a scale of 1 to 5 (1 = Poor, 5 = Excellent). Based on these, provide an Overall Score (1-5)
representing your recommendation for retaining this sample.

Output Requirement:

You must output the result strictly in the following JSON format:

{

"reasoning": "Provide a brief analysis explaining the scores, highlighting pros and cons.",
"textual_expressiveness_score": <integer between 1 and 5>,

"content_consistency_score": <integer between 1 and 5>,

"overall_score": <integer between 1 and 5>

}

Text to Evaluate:

[Insert Text Here]

Figure 6: Prompt template for the quality evaluation of test instances.

nario distribution, combined with a rich variety of  denotes the number of windows. Given that speaker
content topics, minimizes potential bias during the =~ embeddings are sensitive to segment duration and
evaluation process. verification models are typically optimized for 2—
4s segments, we employ a window length of 3s
with a stride of 2s. We then compute the pairwise
We also conduct a detailed analysis of the text  cosine similarity between all distinct embeddings:
length distribution within LFS-Bench, as illustrated o o
in Figure 9. Specifically, text length is quantified by sim; j = COS( Lo,
the number of characters for Chinese data and the lesll™ lles]
number of words for English data, excluding non-  Finally, we utilize the average score of the result-
phonetic elements such as punctuation. The results ing similarity sequence {sim;, j} as the quantitative
indicate that text lengths for both languages follow  metric for timbre consistency.

an approximate normal distribution, primarily con- Evaluating dual and multi-speaker scenarios is
centrate within the interval [80,500], with mean  inherently more complex due to the involvement
lengths of 271.8 for Chinese and 174.6 for English.  of speaker transitions. To ensure validity, we first
This distribution effectively supports the rigorous  utilize 3D-Speaker (Zheng et al., 2023) to verify
and realistic evaluation of long-form speech gener-  the number of speakers, confirming that at least
ation capabilities. one successful speaker turn occurs. Subsequently,
let K denote the number of distinct speakers in
the generated audio. We employ forced alignment
C.1 Timbre Consistency to obtain sentence-level timestamps and concate-
nate speech segments belonging to each speaker
ke {1,..., K}, yielding a speaker-specific audio
stream wy. We utilize a Paraformer-based Align
Model'* (Gao et al., 2022) for Chinese data and
WhisperX'> (Bain et al., 2023) for English data.
Both models demonstrate alignment errors of less
than 100ms on minute-level recordings, minimiz-
ing error accumulation. Finally, for each speaker-

B.2 Distributional Statistics

>, Vi#j. ()

C Details of Evaluation Protocol

To evaluate timbre consistency, we adopt a segment-
based speaker similarity approach following prior
zero-shot TTS studies (Du et al., 2024; Guo et al.,
2024b).

Specifically, for a single-speaker long-form
speech sample w, we apply a sliding window over
the waveform to extract a sequence of speaker em-
beddings {e;}"_; by WavLM TDCNN '3, where n

- 14https ://modelscope.cn/models/iic/speech_
Bhttps://huggingface.co/docs/transformers/en/ timestamp_prediction-v1-16k-offline
model_doc/unispeech-sat Bhttps://github.com/m-bain/whisperX
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Prompt for Privacy and Ethical Filtering

Role: You are an expert data safety and privacy compliance assistant. Your task is to review the input text for privacy
leaks and ethical risks.
Instructions: Please analyze the input text following these steps (Chain-of-Thought):

1. PII Detection (Selective): Identify all person names.

* If the name belongs to a public figure (celebrity, politician, historical figure), retain it to preserve context.

* If the name belongs to a private individual (ordinary citizen), anonymize it using a placeholder (e.g.,
[NAME]).

2. Ethical Risk Assessment: Check for hate speech, explicit violence, sexual content, or severe bias.

o If the risk is severe and cannot be mitigated, mark as invalid.
* If the risk is minor or related to PII, provide a revised version.

Output Format: Output the result in a strict JSON format with the following keys:
* "reasoning”: A brief explanation of your analysis regarding PII and safety risks.

* "valid": Boolean (true/false). Set to false only if the content contains unmitigable toxic content. Set to true if
it is safe or has been successfully anonymized/revised.

* "revised_text": The clean version of the text after anonymizing private names and removing minor risks. If
invalid, return an empty string.

Input Text: [INPUT_TEXT]

Figure 7: The prompt template used for privacy and ethical filtering. It guides the LLM to selectively anonymize
private individuals’ names while retaining public figures, and outputs the decision in a structured JSON format.

specific stream 1y, we compute its similarity av-  Voice Activity Detection (VAD) model'”. Any win-

erage ay following the single-speaker protocol de-  dow containing more than 60% non-speech frames

fined above. The final metric is calculated as the  is discarded. This process yields a sequence of

average across all speakers: valid reverberation scores {r; }_;, where n denotes
the number of effective windows.

K
Scoremuli = % Z ag. 3) Finally, we compute the standard deviation of
k=1 this sequence as our Reverb Consistency metric; a
lower value indicates a more stable reverberation
C.2 Reverb Consistency pattern throughout the utterance.

We employ the Speech-to-Reverberation Modula-
tion Energy Ratio (SRMR) to quantify reverbera-
tion intensity, analyzing its temporal fluctuations to
evaluate the model’s ability to maintain a consistent
acoustic environment.

It is important to note that this metric is predi-
cated on the assumption that the acoustic environ-
ment within a single long-form segment should
remain stable. We acknowledge that specific sce-
narios, such as Outdoor Live Streaming, may inher-
ently require dynamic acoustic shifts for semantic
correctness. However, for the majority of stan-
dard long-form synthesis tasks, acoustic stability
serves as a critical indicator of generation robust-
ness; therefore, we treat high variance as a penalty
in this evaluation framework.

Specifically, for a generated utterance w, we
apply a sliding window to compute the SRMR for
each segment using the SRMRpy toolkit'®. To
balance estimation reliability with the temporal
resolution required to detect “reverberation drift”,
we adopt a window size of 3s and a stride of 2s,
consistent with our timbre consistency evaluation.

Furthermore, to mitigate the impact of non-
speech segments (e.g., silence or noise) on the sta-

tistical analysis, we pre-filter each window using a https://modelscope.cn/models/iic/speech_fsmn_
- vad_zh-cn-16k-common-pytorch,
Yhttps://github.com/jfsantos/SRMRpy https://github.com/snakers4/silero-vad
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Figure 8: The categorical statistics of LFS-Bench across five key dimensions: language, speaker numbers, core

challenges, content topics and scenarios.

C.3 Sound Fidelity

To achieve a non-intrusive, reference-free assess-
ment of audio fidelity, we directly utilize the
SQUIM-PESQ metric via the official Torchaudio
interface!®. This metric yields scores ranging from
-0.5 to 4.5, with values typically exceeding 1.0 for
speech audio.

C.4 Content Accuarcy

To quantify content accuracy, we employ Char-
acter Error Rate (CER) for Chinese and Word
Error Rate (WER) for English. The evalua-
tion pipeline proceeds as follows: First, we
obtain the transcribed text Tpeq from the gen-
erated audio using FunASR-Nano!®.  Subse-
quently, we perform rigorous normalization on
both the ground truth Ty and the prediction Tpyeq.
This process includes: 1) Punctuation Removal:
eliminating punctuation via string.punctuation
and zhon . hanzi . punctuation?’; 2) Whitespace
Standardization: trimming leading/trailing spaces
and collapsing multiple spaces; and 3) Charac-
ter Normalization: converting Traditional Chi-
nese to Simplified using zhconv?! while filter-
ing non-ASCII characters in English text via
clean-text??. Finally, following the methodol-

18https://docs.pytorch.org/audio/main/
tutorials/squim_tutorial.html
19https://github.com/FunAudioLLM/Fun—ASR
20https://pypi.org/project/zhon/
https://pypi.org/project/zhconv/
22https://pypi.org/project/clean—text/
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ogy of F5-TTS (Chen et al., 2024c), we calculate
the WER and CER using the JiWER library?3.

It is worth noting that our selected transcription
system, FunASR-Nano, demonstrates exceptional
performance on clean speech benchmarks, achiev-
ing a WER of 1.76% on Librispeech-clean (EN)
and a CER of 2.56% on Fleurs-zh. These results are
competitive with state-of-the-art models of similar
parameter scale (Srivastav et al., 2025). Utilizing
such a high-performance ASR model minimizes
transcription-induced errors, ensuring that the re-
ported metrics accurately reflect the content fidelity
of the generated audio.

C.5 Prosodic Coherence

For prosody evaluation, we utilize Speech-
Judge (Zhang et al., 2025b), a fine-tuned Qwen?2.5-
Omni model specialized for audio assessment. To
specifically target long-form modeling capabilities,
we refine the original prompt design, decompos-
ing the evaluation criteria into three granular di-
mensions: Prosodic Coherence & Flow, Rhythmic
Hierarchy & Layering, and Overall Naturalness.
Ratings are assigned on a scale from 1.0 to 5.0,
as detailed in Figure 12. Furthermore, to mitigate
the inherent variance of LALMs, we conduct 10
independent evaluations for each generated audio
sample and calculate the mean to derive the final
prosody score.

23https://pypi.org/project/jiwer/
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Figure 9: The statistics of the text length distribution within LES-Bench. The red dashed line indicates the average
text length of English, and the green dashed line indicates the average text length of Chinese.

C.6 Expressive Richness

This dimension assesses the global expressive qual-
ity of the generated speech, representing the av-
erage level of expressiveness. Formally, we seg-
ment the audio waveform into a sequence of non-
overlapping 10-second chunks {c;},. An LALM
is then employed to assign an expressiveness score
s; to each chunk ¢;. The final Expressive Richness
metric is defined as the arithmetic mean of these
segment scores:

M

1
Scoreich = Vi z; S;.
1=

“

The 10-second segmentation window is selected
to align with the typical generation duration of
chunk-based long-form synthesis pipelines. This
strategy effectively mitigates the confounding ef-
fects of inter-chunk inconsistencies, allowing for a
more focused evaluation of intrinsic expressiveness.
The prompt template used for this assessment is
illustrated in Figure 14.

C.7 Expressive Hierarchy

Complementing the local expressiveness defined
above, paragraph-level expressive hierarchy is
equally critical in long-form settings. Unlike the
segment-based approach for Expressive Richness,
we leverage the long-context understanding capa-
bilities of modern LALMs to conduct a holistic
assessment. Specifically, the entire audio sequence
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is fed into the model, which is instructed to evaluate
the speech based on three dimensions: Emotional
Variation, Vocal Dynamics, and Scene Appropri-
ateness.

The prompt template used for this assessment is
illustrated in Figure 13.

D User Study

For the subjective evaluation, we recruit a balanced
cohort of 10 expert listeners (5 male, 5 female) with
diverse professional backgrounds, including audio
engineers from the internet industry, live stream-
ing specialists, and academic researchers (profes-
sors and PhD candidates) in signal processing. All
participants possess extensive experience in audio
quality assessment. In all subjective tests, we con-
duct Mean Opinion Score (MOS) evaluation. They
are compensated at a rate of $1.00 per evaluation
instance (either a single sample or a paired compar-
ison), with the total expenditure for the user study
amounting to $2,000.

D.1 Validation of Timbre Consistency

In this experiment, we randomly select 50 samples
from the test set for subjective evaluation. Listen-
ers are instructed to rate the “Timbre Maintenance”
capability using a Mean Opinion Score (MOS).
They are explicitly required to focus exclusively
on timbre stability, disregarding other acoustic fac-
tors (e.g., sound field, audio quality) and semantic
dimensions (e.g., pronunciation, prosody). If the



expressiveness of the audio does not affect the tim-
bre, it can also be ignored.

We concurrently compute the objective Timbre
Consistency score for each sample. The corre-
lation analysis between the subjective MOS and
our objective metric yields the following results:
SRCC=0.75, PLCC=0.77, and KRCC=0.59. These
results demonstrate that our proposed timbre con-
sistency evaluation aligns closely with human per-
ception.

Furthermore, the user study reveals several sta-
tistical thresholds regarding our objective metric:

1. Score < 0.85: Indicates significant timbre
drift. In multi-speaker scenarios, this may
also suggest inaccurate speaker transitions.

Score < 0.93: Demonstrates superior timbre
maintenance, with performance comparable
to ground truth recordings.

Score < [0.85, 0.90]: Represents generally ac-
ceptable performance, typically characterized
by minor local timbre mutations or artifacts.

Besides, the robustness of this metric presents
room for improvement. Potential misclassifications
may arise in specific edge cases, such as audio ex-
hibiting periodic timbre variations (e.g., looping
patterns). Since our metric relies on global aver-
ages, it may fail to penalize such rhythmic fluctua-
tions, yielding a favorable score despite perceptual
inconsistency. Future work will aim to incorpo-
rate temporal modeling to address these dynamic
artifacts.

D.2 Validation of Sound Fidelity

Considering that SQUIM-PESQ is trained on English
sentence-level data, we select 50 samples from the
test set to verify its generalization to Chinese and
long-form scenarios. Listeners are instructed to rate
“Clarity and Fidelity” using MOS. Specifically, they
are required to focus exclusively on factors such as
background noise, artifacts, and articulation, while
disregarding prosody and expressiveness. We con-
currently compute the SQUIM-PESQ scores for these
samples. The correlation analysis between subjec-
tive MOS and SQUIM-PESQ yield an SRCC of 0.72,
a PLCC of 0.47, and a KRCC of 0.53. These re-
sults demonstrate that the metric aligns closely with
human perception.
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Table 4: Human alignment comparison across different
LALMSs on Expressive Richness.

Models PLCC SRCC QWK MAE
UTMOS -0.0203  -0.0433  -0.0313 1.043
UTMOSv2 -0.0745  -0.0789  -0.0827  0.9012
SQUIM-MOS -0.3145  -0.2767  -0.0825  1.3177
DNS-MOS -0.0243  -0.0189  -0.0034  0.8537
GPT-40 0.1549 0.2002 0.1435  0.7982
Qwen30mni-Flash 0.1464 0.1696 0.0812 1.0401
Qwen3Omni-Instruct  0.2245 0.2488 0.1172 1.0809
Gemini2.5-flash 0.4166 0.4079 0.2623  0.8123
Gemini2.5-pro 0.5085 0.5160 0.4242  0.7635
Gemini3-flash 0.5224 0.5266 0.5066  0.6562
Gemini3-Pro 0.7061 0.7080 0.6772  0.5879

D.3 Validation of Prosodic Coherence

To validate the Prosodic Coherence metric, we
adopt the methodology of SpeechJudge (Zhang
et al., 2025b), conducting a human preference test
to assess the model’s evaluation performance. In
addition to the robust correlation reported in Sec-
tion 3.5, our analysis yields the following statistical
insights:

1. Score Divergence > 1: A difference of more
than 1 points indicates a substantial and per-
ceptually obvious gap in prosodic quality be-
tween audio samples.

. Score > 4: Audio samples achieving
this threshold demonstrate competent basic
prosody and rhythmic structure.

. Score > 4.5: Performance at this level is
considered virtually indistinguishable from
ground truth recordings.

D.4 Validation of Expressiveness

In this experiment, we curate a diverse set of 200
samples spanning all models and tasks for subjec-
tive evaluation. Listeners are tasked with rating the
audio strictly adhering to the same prompt criteria
provided to the LALMs.

Concurrently, we benchmark this 200-sample
test set against 4 specialized MOS prediction mod-
els (UTMOS (Saeki et al., 2022), UTMOSv2 (Baba
et al., 2024), SQUIM-MOS (Kumar et al., 2023),
DNS-MOS (Reddy et al., 2021)) and 8 flag-
ship LALMs (GPT-40, Qwen3Omni-Instruct-30B-
A3B (Xu et al.,, 2025b), Qwen3Omni-Flash,
StepFun-Audio-R1 (Tian et al., 2025), Gemini-2.5-
flash, Gemini-2.5-pro, Gemini-3-flash, Gemini-3-
pro). Notably, due to context length constraints,
only a subset of these LALMs is employed for the
Expressive Hierarchy evaluation.



Table 5: Human alignment comparison across different
LALMSs on Expressive Hierarchy.

Models PLCC SRCC QWK MAE
GPT-40 0.1328  0.1171  0.0803  0.7604
Qwen30mni-Flash 0.3263  0.2496  0.2193  0.8426
Qwen3Omni-Instruct  0.1641  0.1181  0.0869  0.9130
Gemini2.5-flash 0.0421  0.0005 0.0256  0.8673
Gemini2.5-pro 0.3732  0.3744 0.2871 0.800
Gemini3-flash 0.406 0.3924  0.2032 1.1837
Gemini3-Pro 0.6041  0.6234 0.5452  0.7204

We examine the correlation between the mean
listener ratings and the model-predicted scores,
with results summarized in Table 4 and Table 5.
Notably, Gemini3-Pro demonstrates superior per-
formance, significantly outperforming other mod-
els across both metrics. It is also worth noting that
all traditional MOS prediction networks exhibited
poor correlation with human perception regarding
expressiveness. This suggests that standard MOS
training datasets likely lack a specific focus on ex-
pressive qualities.

Moreover, we conduct independent repeated tri-
als on this test set to validate the stability of our
selected evaluator, Gemini 3 Pro. Specifically, we
perform five independent scoring iterations for each
audio sample, where Gemini 3 Pro yields inconsis-
tent scores for only 11 instances, demonstrating a
level of robustness comparable to human evaluators.
Consequently, we adopt a single-pass evaluation
strategy for this metric.

Furthermore, to ensure consistency in the rating
scales adopted by our recruited listeners, we com-
puted the correlation between each individual rater
and the mean score of the remaining raters. As
shown in Table 6, the high inter-rater correlation
confirms the reliability and validity of our evalua-
tion protocol.

E Implementation Detail

E.1 Computational Resources and
Environments

All inference and evaluation experiments for open-
source models are conducted on a server equipped
with 8 NVIDIA GeForce RTX 4090 GPUs and an
Intel Xeon Gold 6530 CPU, running Ubuntu 22.04.
For model inference, we strictly adhere to the envi-
ronment specifications provided in the respective
official repositories. The core dependencies for our
evaluation pipeline include Python 3.10, PyTorch
2.8.0, Torchaudio 2.8.0, and Transformers 4.57.3.
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E.2 Selected Voice

For open-source models, we curate a set of 25
reference audio prompts from diverse datasets,
including Emilia (He et al., 2024), AISHELL-
3 (Shi et al., 2020), NCSSD (Liu et al., 2024b),
LibriSpeech (Panayotov et al., 2015), MSPPod-
cast (Martinez-Lucas et al., 2020), and ChildMan-
darin (Zhou et al., 2025a), as well as reference
voices provided in specific model repositories (see
Table 7). We conduct extensive evaluations across
these prompts and reported the results of the best-
performing voice for each model. This strategy
aims to minimize the impact of biases arising from
training data discrepancies and inherent voice pref-
erences.

For closed-source models, we selected offi-
cial voices characterized by high fidelity, superior
prosody, and rich expressiveness. Detailed specifi-
cations are provided in Table 8.

E.3 Synthesis Strategy

For open-source models, we strictly adhere to the
default configurations provided in their official
repositories. Specific adjustments for MegaTTS3,
CosyVoice3, and IndexTTS2 are detailed below:

MegaTTS3 As the official VAE En-
coder (Kingma et al., 2013) is not publicly
available, we obtain the VAE latents for our
reference prompt speech by contacting the model
maintainers.

IndexTTS2 To ensure a fair and objective com-
parison, we disabled the text sentiment analysis
module by setting use_emo_text to false.

CosyVoice3 We utilized the system text prompt
“You are a helpful assistant” during generation, con-
sistent with the official implementation.

For closed-source models, we similarly followed
the default synthesis strategies without manually
adjusting attributes such as emotion, pitch, or
speaking rate.

All open-source models are evaluated in a zero-
shot setting for long-form and dialogue generation,
whereas closed-source models generated speech
using designated voice profiles. Finally, all gen-
erated audio is resampled to 24kHz for consistent
evaluation.

F Supplementary Experiment

F.1 Inference Speed

The capability to efficiently generate long-form
speech is a pivotal performance criterion, garner-



Table 6: Correlation analysis among different evaluators (A denotes Annotator).

Al A2 A3 A4 AS A6 A7 A8 A9 A10
PLCC(f) 0.8696 0.8426 0.9014 0.9035 09163 0.8766 0.9022 0.7080 0.8830 0.7623
SRCC(1) 0.8711 0.8296 0.9028 0.9025 0.9143 0.8635 0.8945 0.7010 0.8820 0.7585
KRCC(1) 0.7255 0.6804 0.7726 0.7678 0.7872 0.7238 0.7575 0.5399 0.7405 0.6011
QWK(?) 0.8732 0.8330 0.9030 0.8984 0.9079 0.8544 0.8938 0.7002 0.8740 0.7596
MAE({) 03713 04398 0.3336 0.3452 0.3336 0.3994 0.3541 0.5800 0.3892 0.5402

Table 7: Sources and related information of the voice
used in LFS-Bench for open-source models’ inference.

No. Gender Age Group Language Data Source
1 Female English Emilia
2 Male . English Emilia
3 Female Children Chinese ChildMandarin
4 Male Chinese ChildMandarin
5  Female English NCSSD_R_EN
6  Male Teenacer English NCSSD_R_EN
7  Female eenage Chinese AISHELL-3
8 Male Chinese NCSSD_R_ZH
9  Female English msppodcast
10 Male English NCSSD_R_EN
11 Female Chinese AISHELL-3
12 Male Chinese NCSSD_R_ZH
13 Male  Youb-Adult e VibeVoice Github
14 Female Chinese Vibe Voice Github
15 Male English VibeVoice Github
16  Female English VibeVoice Github
17  Female English LibriSpeech
18 Male . English Emilia
19  Female Middle-Aged Chinese NCSSD_C_ZH
20 Male Chinese NCSSD_C_ZH
21  Male Chinese SparkTTS Github
22 Female English msppodcast
23 Male English msppodcast
24 Female Elderly  Cpinese  NCSSD_C_zH
25 Male Chinese NCSSD_C_ZH

ing widespread attention across both academia and
industry. To assess this, we evaluate the compu-
tational efficiency of various open-source models
using the Real Time Factor (RTF) metric. The RTF
is defined as:

Tinference
RTF = ———
Taudio

; 4)

where Tipference denotes the time required for gen-
eration and Tyqi, represents the duration of the
generated audio. The computational efficiency re-
sults for each model are summarized in Table 9 and
Table 10. We observe that non-autoregressive mod-
els exhibit a significant advantage in generation
speed compared to their autoregressive counter-
parts. This finding is consistent with the inherent
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parallel decoding mechanism of non-autoregressive
architectures.

F.2 Ablation on Window Size

The computation of both Timbre Consistency and
Reverb Consistency may be sensitive to the sliding
window configuration. To validate the rationality
of our selected window size and stride, we conduct
an ablation study across these two dimensions. The
experimental results are in Table 11 and Table 12.

In the ablation study for timbre consistency, we
observe that a window size of < 2s results in real
data exhibiting lower consistency than Cosy Voice3,
suggesting a misalignment with human perception.
Conversely, window sizes of > 4s gradually re-
duce the discrepancy between real and synthetic
data, indicating that larger windows tend to av-
erage out transient timbre mutations. Regarding
the stride, comparative experiments reveal no sig-
nificant impact on the results. Consequently, to
enhance evaluation efficiency and reduce computa-
tional overhead, we opt for a larger stride. Based
on these findings, we select a window size of 3s
and a stride of 2s.

In the ablation study for reverb consistency, a
window size of 1s provides sufficient differentia-
tion but proved unstable. Specifically, VibeVoice
exhibit an excessively high standard deviation rel-
ative to its mean reverb score of 9.25, indicating
hypersensitivity at this scale. Conversely, window
sizes of > 4s reduce the inter-model differences,
implying that overly large windows overlook small-
scale acoustic field mutations. Balancing compu-
tational efficiency and resource overhead, we simi-
larly select a window size of 3s and a stride of 2s.
Notably, our evaluation method demonstrates over-
all stability, as the relative rankings of the models
remain consistent.



Table 8: the information of the voices selected in the evaluation for closed-source models.

Provider Language Single Speaker Two Speakers Multi Speakers
OpenAl General Alloy Onyx, Nova Round-robin: [“alloy”, “echo”, “fable”, “onyx”, “nova”, “shimmer”]
Gemini General Puck Puck, Aoede Round-robin: [“Puck”, “Aoede”, “Charon”, “Kore”, “Fenrir”]
ElevenLabs General Rachel Charlie, Rachel Charlie, Rachel, George, Bella, Antoni
.. English male-qn-gingse - -
Minimax
Chinese Chinese (Mandarin)_ Male_Announcer - -
English BV503_streamin, - -
Seed-TTS e —streaming
Chinese BV005_streaming - -
h_male_dayixiansheng_v2_saturn_bigtts,
Seed-TTS-Podcast ~ General - A —Gayiiansheng_v2_saturm ol -
zh_female_mizaitongxue_v2_saturn_bigtts
English Deborah, Alex - -

Inworld

Chinese Jing, Yichen
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Figure 10: Results on Sequence Length. The horizontal axis represents the number of sentences in the text.

Solid

lines denote models using the End-to-End strategy, while dashed lines represent the chunked synthesis.

F.3 Ablation on Generated Length

To further verify the impact of long-sequence mod-
eling on acoustic, semantic, and expressive perfor-
mance, we extend the analysis presented in Fig-
ure 4. Beyond the original six dimensions, we addi-
tionally track the evolution of Timbre Consistency
and Timbre Similarity with respect to increasing
generation length, as shown in Figure 10.
Regarding the Timbre Similarity metric, we
adopt the methodology from prior works (Huynh-
Nguyen et al., 2025). Specifically, the generated
audio w is segmented into a sequence {w; }7"; us-
ing a window size of 3s and a stride of 2s. We then
utilize WavLM TDCNN?* to extract and normalize
speaker embeddings for each segment w; and the
reference audio w,. ¢, yielding the embedding se-
quence {e;}7; and the reference embedding e, .
Finally, we calculate the average cosine similarity

24h'ctps ://huggingface.co/docs/transformers/en/
model_doc/unispeech-sat
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between the generated segment embeddings and
the reference embedding to serve as the quantitative
indicator of Timbre Similarity.

Overall, we observe a general performance de-
cay across nearly all metrics as the generation du-
ration increases. Specifically, Reverb Consistency,
Prosodic Coherence, and Expressive Hierarchy ex-
hibits the most significant degradation. These find-
ings suggest that current models struggle to main-
tain acoustic field stability and effectively capture
long-term dependencies in long-form settings. Con-
versely, Timbre Similarity and Timbre Consistency
remained relatively stable compared to other acous-
tic dimensions. This stability highlights the ef-
fectiveness of “in-context learning” paradigms (Du
etal., 2024; Jiang et al., 2025) in preserving speaker
identity. Additionally, with the exception of Spark-
TTS, most models demonstrate robust Content Ac-
curacy. This can be attributed to the strong text
understanding and alignment capabilities inherent
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Table 9: The Real Time Factor of mono-speaker long
form speech generation models.

Models RTF

Autoregressive Models

CosyVoice-2 (0.5B) 1.061 + 0.031
CosyVoice-3 (0.5B) 0.747 &+ 0.048
FishSpeech (0.5B) 1.351 £ 0.131
GLM-TTS (1.5B) 2.400 + 0.158
IndexTTS-2 (0.1B)  1.065 £ 0.037
SparkTTS (0.5B)  2.046 + 0.212
VibeVoice (1.5B)  3.801 + 0.317

Non-Autoregressive Models

F5TTS (0.3B) 0.198 £ 0.006
MegaTTS3 (0.45B) 0.172 £ 0.002
ZipVoice (0.12B)  0.338 £ 0.013

Table 10: The Real Time Factor of two-speaker dialogue
generation models. MOSS-TTSD supports batch infer-
ence, thus we directly report the RTF of batch process(
batchsize = 32)

Models RTF
FireRedTTS2 4.717 + 0.963
MoonCast (2.6B) 5.219 4+ 0.048
MOSS-TTSD (1.7B) 0.219 + 0.019
SoulX-PodCast (1.7B)  2.143 £ 0.169
VibeVoice (1.5B) 4.092 + 0.305
ZipVoice-Dialog (0.12B)  0.305 % 0.030

in modern TTS architectures.

F.4 Multi-Speaker Dialogue Generation

To facilitate future research in multi-speaker long-
form speech synthesis, LFS-Bench incorporates
101 test cases specifically designed for 3- and 4-
speaker dialog scenarios. Using this subset, we
evaluate three closed-source models capable of
multi-speaker generation: ElevenLabs Multilingual
V2, Gemini-2.5-pro-preview-tts, and OpenAl-tts-1-
hd. The experimental results are shown in Table 13.

G More Analysis Based on LFS-Bench

G.1 Detailed analysis on each metric

Timbre Consistency Although experimental re-
sults indicate that real data generally outperforms
synthetic data in timbre consistency (single speaker:
0.96 vs. 0.93; two-speaker: 0.95 vs. 0.92), this gap
is not significant. This suggests that the consis-
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Table 11: The Ablation study of window setting for
timbre consistency. We select the representative mod-
els, CosyVoice3 and OpenAl-tts-1-hd, to conduct this
ablation in single-spaeker settings.

Window Setting

= CosyVoice3 OpenAl Real-Speech
Size (s) Stride (s)

1 0.5 0.868 0.824 0.844
2 1 0.911 0.887 0.901
3 1 0.930 0.916 0.956
3 2 0.929 0.915 0.955
4 2 0.941 0.931 0.963
5 2 0.942 0.949 0.967
10 4 0.968 0.971 0.971

Table 12: The Ablation study of window setting for
reverb consistency. We select the representative models,
VibeVoice and Gemini-2.5-pro-preview-tts, to conduct
this ablation in two-spaeker settings.

Window Setting

VibeVoice Gemini Real-Dialog
Size (s) Stride (s)
1 0.5 6.40 4.99 3.87
2 1 4.27 3.62 3.20
3 1 3.58 3.17 2.67
3 2 3.59 3.17 2.74
4 2 3.20 2.85 2.51
5 2 2.95 2.61 241
10 4 223 1.88 1.60

tency performance of current models is acceptable.
However, we offer two deeper insights. First, open-
source models exhibit a relatively larger standard
deviation compared to closed-source models, indi-
cating that their stability still lags behind commer-
cial solutions. Second, dialogue models demon-
strate greater variance in timbre consistency than
single-speaker long-form speech. Given that we
have minimized error accumulation from forced
alignment, this increased variance likely reflects
that models are still hindered by speaker transi-
tions.

Reverb Consistency In this dimension, single-
speaker performance is comparable to human
recordings. Apart from the CosyVoice series and
ElevenLabs models, which underperform on this
metric, other models maintain robust reverb consis-
tency, demonstrating strong acoustic field preser-
vation over extended durations. Conversely, in dia-
logue scenarios, all open-source models and the ma-
jority of closed-source models show a significant
performance gap compared to real data (Open av-
erage: 3.45; Closed average: 3.36). Feedback from



Table 13: Results of multi-speaker dialogue generation models across LFS-Bench’s metrics. The best results

are in bold and the second best are underlined.

| Acoustics | Semantics | Expressiveness
Model \ Timbre(t) Reverb(]{) Sound Fidelity(1) \ CER/WER(]) Prosody(1) \ Richness(1) Hierarchy(1)
Elevenlabs Multilingual V2 | 0.931+0.030 4.72+0.69 3.19+0.37 0.183/0.12 3.28+0.87 3.2340.54 3.52+0.82
Gemini-2.5-pro-preview-tts | 0.924+0.012  3.2840.75 3.04+0.17 0.077 7 0.102 3.92+0.36 3.86+0.46 4.05+0.62
OpenAl-tts-1-hd 0.92+0.011 1.91+0.38 2.2940.17 0.106/0.104 3.78+0.63 2.93+0.60 3.77+0.84
Average 0.92 3.30 2.84 0.122/0.109 3.66 3.34 3.78

our user study further reveals inconsistencies in
sound fields and volume between speakers in gen-
erated dialogues. This indicates a need to enhance
the models’ ability to disentangle prompt speech
attributes. Consequently, future work should pri-
oritize maintaining acoustic unity during speaker
transitions.

Sound Fidelity Regarding this metric, the perfor-
mance of generated speech aligns closely with that
of real data. Notably, models such as FishSpeech
and ElevenLabs achieve scores significantly sur-
passing the mean of real data. This suggests that
contemporary models have largely resolved sound
quality constraints. The fact that generated speech
outperforms human recordings likely stems from
the composition of the real data. Since the major-
ity of real data is web-crawled rather than studio-
recorded, it is susceptible to device and environ-
mental noise, which compromises its fidelity.

Content Accuracy Prior studies indicate that
metrics such as WER have reached saturation
in sentence-level speech generation (Chen et al.,
2024b). This finding extends to chunk-based in-
context learning approaches, where models like
CosyVoice2 and MegaTTS3 demonstrate excep-
tional performance. However, the metric remains
relevant for autoregressive end-to-end architectures.
For instance, SparkTTS exhibits suboptimal Con-
tent Accuracy in long-form generation. As in Fig-
ure 10, deeper ablation studies confirm that the
character accuracy of such models declines as the
text length increases.

Prosodic Coherence Regarding prosodic coher-
ence, we observe a distinct gap between real and
synthetic speech, suggesting that current models
require further improvement in prosody modeling.
Notably, closed-source models significantly out-
perform their open-source counterparts in this di-
mension. This indicates that while open-source
models achieve parity with state-of-the-art systems
in fidelity and content accuracy, they still lag in
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perceptual metrics such as prosodic naturalness.

Expressive Richness Experimental results iden-
tify expressiveness as the primary differentiator be-
tween real and synthetic audio. Specifically, open-
source models trail real data by approximately
1.5 points in Expressive Richness. While closed-
source models demonstrate marked improvement,
they still exhibit a gap of nearly 1.0 point. Further-
more, our scenario-based analysis confirms that
models underperform in high-expressiveness set-
tings. These findings consistently underscore that
generating realistic, highly expressive speech re-
mains a pivotal challenge for achieving immersive
audio generation.

Expressive Hierarchy Similar to Expressive
Richness, real data outperforms synthetic speech
in this metric, with closed-source models surpass-
ing their open-source counterparts. Notably, in
single-speaker tasks, models consistently achieve
lower scores on Expressive Hierarchy compared
to Expressive Richness. This indicates that cap-
turing and modeling paragraph-level hierarchical
structure remains a significant challenge. Further-
more, dialog models generally exhibit superior hi-
erarchical performance compared to single-speaker
models. We attribute this to the inherent semantic
logic of dialog interactions, which likely provides
stronger contextual cues that facilitate the learning
of hierarchical patterns.

G.2 Analysis based on the scenarios

We extend our analysis by providing scenario-
based performance results, visualizing the metrics
of closed-source models via a radar chart in Fig-
ure 11. These detailed findings corroborate our
primary conclusion: most metrics exhibit vary-
ing degrees of degradation in high-expressiveness
scenarios. A granular visualization reveals that
challenging scenarios such as sportscast, host, and
talk-show suffer the most severe performance de-
cline. This further indicates that current models



lack the capacity to effectively model highly dy-
namic prosody and intense emotional variations.

We provide a detailed explanation of the nor-
malization procedures applied to the radar charts
in Figure 11. For LALM-based metrics (Expres-
sive Richness, Expressive Hierarchy, Prosodic Co-
herence), we directly utilize the original values
as its definition is consistent with that of MOS
scores. For Fidelity, quantified by SQUIM-PESQ
(range [—0.5, 4.5]), we apply a linear shift of +0.5
for alignment. Regarding Timbre Consistency, Re-
verb Consistency, and Content Accuracy, we first
identify the global maximum s, and minimum
Smin across all models in all scenarios. Then, we
employ a mapping function f that projects the
range [Smin, Smax) onto the interval [1,5]. This
transformation ensures that for all dimensions in
the radar chart, a larger value consistently repre-
sents superior performance. The radar charts in
Figure 3 and Figure 1 follow this identical normal-
ization protocol.

G.3 Analysis based on the Languages

We also present the experimental results for the
evaluated models across the two covered languages,
Chinese and English, as shown in Table 14 and
Table 15.

We observe that although all evaluated models
claim bilingual capabilities, the target language
significantly impacts performance for the major-
ity. For instance, despite utilizing identical voice
profiles, ElevenLabs Multilingual V2 exhibits a
marked disparity in Expressive Richness between
Chinese and English (1.79 vs. 2.87). A similar di-
vergence is evident in Seed-TTS-Podcast (Chinese:
4.19 vs. English: 3.49). In contrast, Gemini-2.5-
pro-preview-tts stands out by not only delivering
exceptional performance in prosody and expres-
siveness but also maintaining a consistent balance
across both languages.

H Future Works

While LFS-Bench provides a comprehensive evalu-
ation framework for long-form speech generation,
several challenges warrant further exploration:
Dependency on Closed-source Models: The
evaluation of Expressiveness in LFS-Bench cur-
rently relies on closed-source models such as Gem-
ini 3 Pro. The absence of open-source alterna-
tives poses a risk to reproducibility due to potential
updates in closed-source APIs. Future work will
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focus on distilling high-performance open-source
evaluators using data derived from both human as-
sessments and closed-source model outputs.

Limited Language Coverage: Our current
dataset focuses exclusively on English and Chi-
nese, omitting other languages, particularly low-
resource ones. Future efforts should aim to expand
the linguistic breadth of long-form speech genera-
tion evaluation.

Timbre Sensitivity: To ensure diversity, LFS-
Bench utilizes over 20 reference voices spanning
various genders and ages. However, as noted in
prior work (Manku et al., 2025), model perfor-
mance in expressiveness and prosody is highly sen-
sitive to the reference voice. Our current selection
may not be sufficiently diverse. Future research
should investigate the impact of input voice charac-
teristics on long-form synthesis more deeply.

Instruction Following Capabilities: LFS-
Bench primarily evaluates models in zero-shot set-
tings. However, recent advancements have intro-
duced models capable of Instruct-based speech
generation (Huang et al., 2025; Wang et al., 2025;
Zhou et al., 2025b; Xu et al., 2025b). Developing
long-form InstructTTS systems and evaluating their
instruction-following capabilities in long-context
settings represent significant avenues for future re-
search.

I Social Impacts

This work aims to advance immersive and robust
long-form speech generation, facilitating superior
downstream applications. However, enhanced gen-
erative capabilities inevitably heighten the risk of
misuse, potentially violating ethical norms and le-
gal regulations. These risks highlight the critical
need for ethically aligned practices and sufficient
oversight. To mitigate these concerns, we sub-
jected our text data to rigorous ethical review and
anonymization. We also verified that the accompa-
nying audio samples are free of Personally Identifi-
able Information (PII). Additionally, we mandate
that all researchers utilizing this benchmark strictly
adhere to the CC BY-NC-SA 4.0 license. We hope
that the progress in speech generation technology
will benefit society through responsible and ethical
deployment.
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Figure 11: We visualize the performance of closed-source models in single-speaker long-form generation across
various downstream scenarios using a radar chart. To ensure consistency, we normalize the metrics for Timbre
Consistency, Reverb Consistency, and Content Accuracy within their respective minimum and maximum ranges. As
a result, all metrics are presented such that higher values indicate better performance.
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Table 14: Evaluation results of long-form TTS models across two languages. Metrics cover Acoustics (Timbre/Re-
verb Consistency, Fidelity), Semantics (Content Accuracy, Prosodic Coherence), and Expressiveness (Richness,
Hierarchy). Closed-source models and open-source models are separately marked, with the best results in bold and
the second best italic. Chinese results and English results are separately marked as well, with Chinese in black and
English in red.

Acoustics Semantics Expressiveness
Models Languages upre(t) Reverb()) Fidelity(t) Content(l) Prosody() Richness(t) Hierarchy(1)
Open-Source Models
SoarkTTS ZH 0.90 0.79 3.47 0.329 2.37 3.29 2.11
pa EN 0.95 2.96 3.70 0.240 2.78 3.64 2.65
i Voice ZH 0.90 1.65 3.55 0.072 3.24 3.16 2.87
P EN 0.89 247 3.47 0.396 3.13 171 1.34
ZH 0.93 1.52 3.99 0.035 4.07 3.17 3.12
GLM-TTS EN 0.94 1.70 3.90 0.118 321 2.19 1.96
CosvVoiced ZH 0.90 1.74 3.57 0.032 3.62 347 3.13
Y EN 0.93 2.95 4.02 0.168 2.84 2.56 239
CosyVoice3 ZH 0.94 1.83 3.83 0.034 3.92 3.36 2.83
sy EN 0.93 2.68 3.82 0.141 2.83 223 2.07
ZH 0.93 2.12 3.67 0.035 3.92 3.02 2.88
MegaTTS3 EN 0.93 1.50 3.43 0.108 3.30 2.60 2.17
ZH 0.95 1.28 2.39 0.033 3.96 4.02 3.30
IndexTTS2 EN 0.92 215 3.15 0.135 3.33 3.15 2.62
FishSneech ZH 0.92 1.76 4.06 0.043 4.03 325 3.16
shopeec EN 0.93 1.81 4.13 0.113 3.56 2.06 2.63
VibeVoice ZH 0.91 1.54 3.88 0.047 391 3.47 3.34
EN 0.95 275 375 0.111 3.88 3.95 3.34
ESTTS ZH 0.88 1.13 3.12 0.072 3.28 3.50 273
EN 0.92 2.51 3.65 0.113 3.54 2.64 2.81
Averase ZH 0.92 1.54 3.55 0.073 3.63 3.37 2.95
8 EN 0.93 235 3.70 0.164 3.24 2.67 2.40
Closed-Source Models

N ZH 0.90 1.38 3.13 0.059 413 4.20 3.53
Semini-2.0-pro-preview-is EN 0.92 1.49 3.19 0.169 3.69 4.07 3.48
ZH 0.91 1.65 2.69 0.043 4.00 3.20 3.07
OpanAl-tts-1-hd EN 0.92 1.82 2.60 0.119 3.82 371 3.43
N ZH 0.93 1.43 3.83 0.030 4.14 4.00 3.56
MiniMax-Speech-2.6-hd EN 0.92 1.32 3.81 0.119 3.77 3.60 2.95
. 7ZH 0.95 3.04 4.00 0.100 3.26 1.79 238
Elevenlabs Multilingual V2 EN 0.96 3.05 4.04 0.115 3.73 2.87 2.97
Inworld-tts. Lmax ZH 0.94 2.19 372 0.053 373 341 2.92
orid-tts-1-ma EN 0.92 2.19 3.74 0.114 3.69 3.95 3.13
ZH 0.94 1.99 3.86 0.106 3.86 3.06 246
Seed-TTS2 EN 0.94 1.91 3.89 0.193 3.62 3.14 221
Averase ZH 0.93 1.95 3.54 0.065 3.85 3.28 2.99
8 EN 0.93 1.96 3.55 0.138 372 3.56 3.03
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Table 15: Evaluation results of dialog generation models across two languages. Metrics cover Acoustics
(Timbre/Reverb Consistency, Fidelity), Semantics (Content Accuracy, Prosodic Coherence), and Expressiveness
(Richness, Hierarchy). Closed-source models and open-source models are separately marked, with the best results
in bold and the second best italic. Chinese results and English results are separately marked as well, with Chinese
in black and English in red.

Acoustics Semantics Expressiveness
Models Languages v obre(t) Reverb(]) Fidelity(t) Content(]) Prosody(l) Richness(t) Hierarchy(1)
Open-Source Models
i Voice ZH 0.90 3.15 2.65 0.069 4.01 3.01 2.87
p EN 091 391 2.67 0.114 334 224 272
MoonCast ZH 0.89 311 2.56 0313 3.25 258 2.60
EN 091 3.01 2.68 0.125 3.08 278 279
. ZH 0.92 3.32 3.16 0.075 357 3.16 3.03
FireRedTTS2 EN 0.93 3.64 2.08 0.131 291 2.29 2.58
ZH 0.90 3.02 3.13 0.148 3.10 3.66 326
MOSS-TTSD EN 0.91 407 264 0.239 247 275 271
VibeVoice ZH 0.90 3.6 332 0.106 3.48 374 3.34
EN 091 391 338 0.125 3.66 378 339
SoulXPodeast ZH 0.92 331 3.94 0.061 4.01 3.69 3.82
EN 0.94 3.70 3.98 0.090 4.00 318 3.59
Averase ZH 091 3.0 3.13 0.129 3.42 331 3.15
g EN 0.92 371 3.07 0.154 3.24 2.84 2.96
Closed-Source Models
Gemini2.5-oro-oreview-its ZH 091 3.07 3.05 0.086 4.12 4.10 411
>-pro-p EN 0.93 3.26 2.96 0.092 4.00 4.02 3.93
ZH 0.92 2.97 226 0.104 352 3.17 3.56
OpenAl-ts-1-hd) EN 0.93 2.99 2.29 0.103 3.86 3.41 3.84
B ZH 0.93 4.55 338 0.127 3.44 232 311
Elevenlabs Multilingual V2) EN 0.93 431 3.58 0.109 3.89 3.36 3.81
ZH 0.92 248 3.90 0.063 4.16 4.19 4.26
Seed-TTS-Podcast EN 0.91 3.22 3.88 0.108 3.70 3.49 342
Averase ZH 0.92 327 3.15 0.095 3.81 3.45 3.76
g EN 0.93 345 3.18 0.103 3.86 357 3.75
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Prompt for Prosody Coherence

Role: Senior Linguistic Expert & Prosody Analyst. You are an expert in assessing speech naturalness, with a hyper-
sensitivity to prosodic coherence, rhythmic hierarchy, and robotic artifacts.
Input Data:

» Target Text: The reference text script that needs to be synthesized.

* Audio Output: The speech audio generated by the TTS model (labeled as Output A).

Generation Requirements:

1. Core Task: Evaluate the audio’s naturalness by analyzing its prosodic structure and coherence against the target
text, rather than just audio quality.

2. Dimension 1 - Prosody Coherence & Flow: Assess the smoothness of the speech stream. Check for unnatural
pauses, abrupt disjoints between words/phrases, and the logical flow of intonation across sentence boundaries.

3. Dimension 2 - Rhythmic Hierarchy & Layering: Evaluate the structural stress patterns. Does the speaker
correctly emphasize content words while de-emphasizing function words? Is there a natural "melody" (intonation
contour) rather than a flat or repetitive beat?

4. Dimension 3 - Overall Naturalness: Check for presence of human-like micro-prosody (e.g., breathiness, slight
pitch variations).

5. Format: Strictly output a valid JSON object. No other text.

Scoring Guidelines (1.0-5.0, step of 0.5):

¢ 5.0 (Human-Parity): Indistinguishable from a professional human speaker; perfect coherence and rich prosodic
hierarchy.

4.0 (Natural): Very smooth and pleasant; minor prosodic flaws only noticeable to experts; good structural
layering.

* 3.0 (Acceptable): Intelligible and decent flow; but lacks depth (flat hierarchy) or contains audible TTS artifacts.

¢ 2.0 (Mechanical): Disjointed flow; unnatural pauses; wrong stress placement (e.g., stressing every word equally).

1.0 (Robotic): Completely lifeless; broken prosody; difficult to listen to.
JSON Schema:

{

non

"Overall_Impression": "[Brief summary of naturalness and flaws]",
"Detailed_Analysis": {
"Coherence_and_Flow": "[Critique the smoothness and connection...]",

woon

"Hierarchy_and_Layering": "[Analyze stress patterns and intonation curves...]",

n,on

"Naturalness": "[Comments on naturalness]"

}s
"Score": [Number 1.0-5.0],

Figure 12: Structured prompt for evaluating long-form audio’s performance in Prosody Coherence.
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Prompt for Expressive Hierarchy

Role: Senior Voice Director & Audio Engineer (Long-Form Specialist). You are an expert in long-form narration
(audiobooks, documentaries), hyper-sensitive to monotony, repetitive patterns, and lack of structural progression.
Generation Requirements:

1. Core Task: Analyze how the performance evolves over time, focusing on "Layering and Hierarchy".

2. Dimension 1 - Emotional Variation & Arc: Evaluate progression from beginning to end, distinction between
climax and exposition, and avoidance of "one-note" acting.

3. Dimension 2 - Vocal Dynamics: Check for macro/micro dynamics (volume/tempo shifts).

4. Dimension 3 - Scene Appropriateness & Structural Fit: Assess contextual adaptation to content structure and
long-term engagement.

5. Format: Strictly output a valid JSON object. No other text.
Scoring Guidelines (1.0-5.0, step of 0.5):
* 5.0 (Masterful): A journey with rich variety; no repetitive patterns; perfect for long listening.
* 4.0 (Strong): Good dynamics and clear emotional shifts; avoids obvious monotony.
* 3.0 (Acceptable but Static): Pleasant but lacks progression; risks boring the listener over time.

* 2.0 (Repetitive): Clear signs of "looping prosody"; same intonation for every sentence.

1.0 (Robotic): Lifeless; no dynamic range or emotional change; raw TTS-like.

JSON Schema:
{

non

"Overall_Impression": "[A brief summary of the long-form experience]",
"Hierarchy_Analysis": {
"Emotional_Arc": "[Describe the emotional progression...]",
"Dynamics_and_Rhythm": "[Critique the pacing and prosody...]",

n,on

"Scene_Fit": "[How well does it adapt to the structure?]"
}s
"Score": [Number 1.0-5.0],
"Final_Recommendation": "[Highly Recommended / Recommended with Reservations / Not Recommended]"

Figure 13: Structured prompt for evaluating long-form audio performance, focusing on expressive hierarchy.
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Prompt for Expressive Richness

Role: You are a Senior Voice Director and Audio Engineer with standards equivalent to a top-tier animation studio.
Your task is to meticulously evaluate a voice recording and determine if it meets professional standards.
Evaluation Dimension: Performance & Expressiveness

* Emotional Resonance: Genuine, layered emotion vs. flat/forced.

» Character Portrayal: Believable, consistent character; tone/age/personality coherence.

¢ Storytelling & Immersion: Narrative flow, atmosphere, and engagement.

Exclusions: Ignore sudden stop, audio quality, timbre consistency, and pronunciation accuracy.
Scoring Guidelines (1.0-5.0):

* 5.0 (Outstanding): Richly expressive, immersive, and artistically elevated.

4.0 (Strong): High expressiveness, close to professional but lacks fine nuance.

* 3.0 (Adequate): Meets basic requirements; emotions may be somewhat generic.

2.0 (Flat): Unconvincing, weak emotional expression, clearly subpar.
* 1.0 (Mechanical): Synthetic/lifeless, no emotional color or dynamics.

JSON Schema:

{
"Overall_Impression": "A brief, one-sentence summary of the audio.",
"Expressiveness": "Detailed professional analysis of the performance dimension.",
"Expressiveness_Score": [Number between 1.0 and 5.0 in 0.5 increments],

non

"Final_Recommendation": "[Highly Recommended / Recommended with Reservations / Not Recommended]"

Figure 14: The structured prompt used for professional voice performance and expressiveness assessment.
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