

Comprehensive Benchmarking of Long-Form Speech Generation in Diverse Scenarios

Anonymous ACL submission

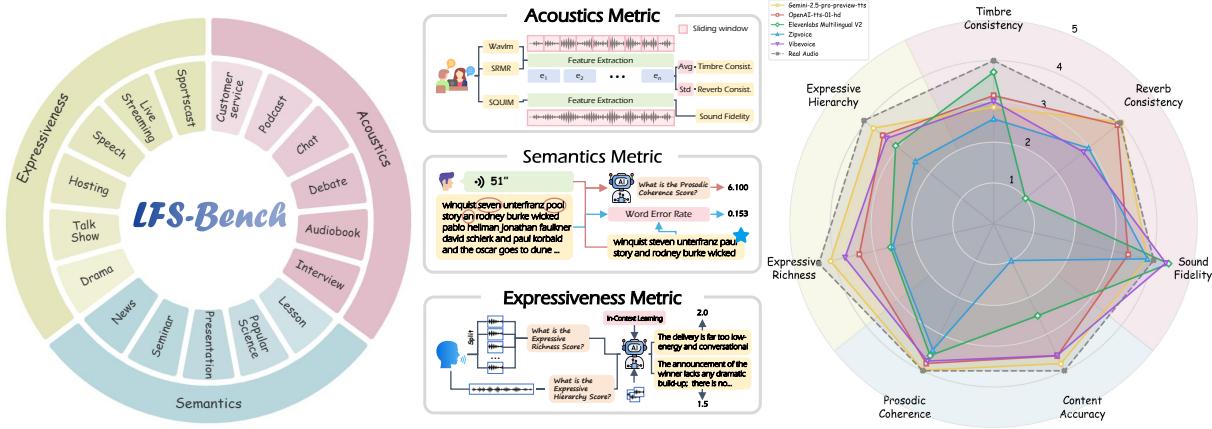


Figure 1: **Overview of LFS-Bench.** We propose LFS-Bench, a comprehensive benchmark designed to evaluate the performance of long-form speech generation models. **Left:** We construct test sets across 17 downstream speech scenarios, grounded in three core challenges of long-form generation: *Acoustics*, *Semantics*, and *Expressiveness*. **Center:** Along these three challenge axes, we propose seven disentangled metrics to comprehensively assess model performance and validate them through human alignment studies. **Right:** Extensive experiments show that existing models still have substantial room for improvement in reverb consistency, prosodic coherence, and expressiveness.

Abstract

Recent advances in speech generation have enabled high-fidelity synthesis, yet systematic evaluation of models under long-context conditions remains largely underexplored. A comprehensive evaluation benchmark for long-form speech is indispensable for two reasons: 1) existing test scenarios are often confined to limited domains, creating a significant gap with the diverse downstream applications; 2) existing metrics overlook critical long-text factors such as consistency and coherence, failing to generalize reliably. To this end, we propose LFS-Bench, a comprehensive benchmark that decomposes “long-form speech quality” into specific, disentangled dimensions. LFS-Bench has three key properties. **1) Rich speech scenarios:** Focusing on long-form speech generation and dialog generation, LFS-Bench covers acoustics, semantics, and expressiveness challenges, and consists of 1,101 samples spanning 17 common speech scenarios; **2) Comprehensive evaluation dimensions:** Along the acoustics, semantics, and expressiveness axes, LFS-Bench de-

fines an automated evaluation protocol with seven metrics to provide a comprehensive, accurate, and standardized assessment; **3) Valuable Insights:** Through extensive experiments, we reveal that current models still struggle in highly expressive scenarios and exhibit a notable gap in consistency and hierarchy compared to real recordings. The project page can be found at <https://lfs-bench.github.io>.

1 Introduction

Recent advances in generative modeling have revolutionized content creation across modalities (OpenAI, 2024; Esser et al., 2024; Guo et al., 2025). While Large Language Models (LLMs) have demonstrated impressive capabilities in long-context generation and understanding (Chen et al., 2023; Xiao et al., 2023; Bai et al., 2024), the speech community is similarly shifting focus from sentence-level to paragraph-level synthesis (Le et al., 2023; Shen et al., 2024). Compared to traditional concatenation strategies, end-to-end long-form TTS paradigms promise superior acoustic and

semantic consistency, leveraging broader contextual cues (Peng et al., 2025; Park et al., 2024).

Despite these advancements, the systematic evaluation of long-form speech remains a significant challenge. While downstream applications involve complex multi-speaker interactions and rich semantic contexts, existing test scenarios are often confined to limited domains or single-speaker settings (Koizumi et al., 2023; Zhang et al., 2022). This discrepancy prevents a thorough assessment of how models handle the rich challenges inherent in long-form generation, leaving their capabilities in complex scenarios largely underexplored.

Furthermore, establishing an effective evaluation protocol that is both scalable and accurate is equally difficult. Existing sentence-level metrics like Word Error Rate (WER) (Ali and Renals, 2018) have become saturated (Chen et al., 2024b) and correlate poorly with human perception in long-text contexts (Minixhofer et al., 2025). Although human listening tests are the gold standard, they are non-scalable and costly. Recently, MLLM-based evaluators have emerged (Chen et al., 2024a; Manku et al., 2025), yet they typically provide coarse-grained comparative judgments rather than quantitative metrics, often overlooking the property of consistency (Li et al., 2024). Consequently, the field lacks an automated protocol aligned with the fine-grained nuances of long-form generation.

To this end, we propose LFS-Bench, a comprehensive benchmark for long-form TTS models with three core properties: 1) **rich** scenarios, 2) **comprehensive** evaluation, and 3) **valuable** insights.

First, LFS-Bench is defined over two fundamental long-form TTS paradigms: long-form speech generation and dialog generation. Starting from three core dimensions of long-form speech, namely *acoustics*, *semantics*, and *expressiveness*, LFS-Bench constructs 1,101 test samples spanning 17 downstream scenarios, providing broad coverage of long-form TTS applications.

Second, our framework establishes an automatic evaluation protocol that employs a hierarchical approach to decomposing “long-form speech quality”. Transcending the traditional focus on Fidelity and Accuracy, we introduce novel dimensions tailored for long-form characteristics, specifically Acoustic Consistency, Prosodic Coherence, and Expressive Hierarchy. These metrics effectively address the limitations of existing protocols by quantifying temporal stability and expressive dynamics. Moreover, we conduct user studies to validate the reli-

Table 1: Comparison of speech generation benchmarks and test datasets. **Pipe.** indicates availability of an automatic evaluation pipeline, and **✗** marks that only part of the metrics are objectively computable. * denotes non-public data, with results estimated from the paper.

Benchmark	Clips	Scenario	Spk-Num	Avg-Word	Pipe	Dim.
SeedTTS-Eval	6612	1	1	19.57	✗	3
EmergentTTS-Eval	1645	6	1	33.93	✓	5
TTSDS2	60	4	1	24.24	✓	4
Choice of Voices	1	1	1	988	✗	5
MinutesSpeech-test	1221	1	1	134	✗	6
LibriSpeech-long	960	1	1	534.5	✗	6
NeuralTTS-eval	250	1	1	260*	✗	9
MultiDialog	831	3	2	319.8	✗	4
LFS-Bench	1101	17	1-4	228.6	✓	7

ability of these automated metrics, ensuring they serve as a scalable proxy for human perception.

Finally, through extensive experiments on LFS-Bench, we derive critical insights detailed in Section 5. Our empirical results reveal that while current models rival human recordings in fidelity and accuracy, they exhibit substantial gaps in reverb consistency, prosodic coherence, and expressive hierarchy. Notably, performance deteriorates in highly expressive scenarios, underscoring the persisting challenges in modeling long-term dependencies and dynamic stylistic variations.

We’re open-sourcing LFS-Bench, including test samples, and evaluation scripts with prompts. We’ll also include more models in LFS-Bench to drive forward the field of long-form speech generation.

2 Related Work

Long-form TTS Generating long-form speech and dialogues presents significant challenges in maintaining prosodic coherence, modeling long sequences, and managing speaker transitions. To ensure prosodic consistency, recent studies have explored joint style modeling and cross-sentence memory mechanisms (Guo et al., 2024a; Li et al., 2025). Concurrently, to enhance long-sequence modeling efficiency, researchers have introduced compact representations via multi-resolution quantization (Nishimura et al., 2024) or low frame-rate tokenization (Peng et al., 2025), as well as state space models to alleviate memory bottlenecks (Park et al., 2024). Regarding speaker transitions, while early works combined autoregressive (AR) and non-autoregressive (NAR) components (Borsos et al., 2023), recent advancements have further developed both paradigms: NAR approaches increasingly employ flow-matching techniques, whereas AR models leverage speaker tokens to handle long-context dialogues (Ju et al.,

136 2025; Xie et al., 2025a). Despite these technical strides, existing metrics remain insufficient for
137 evaluating prosodic coherence, emotional richness,
138 and transition quality. To bridge this gap, LFS-
139 Bench introduces a unified evaluation framework
140 with targeted test cases and human-aligned metrics
141 designed to quantify these critical properties.
142

143 **Evaluation for Speech Generation Models** Current TTS evaluation mainly relies on four objective
144 metric families: signal-based metrics (Taal
145 et al., 2010), MOS prediction networks (Saeki
146 et al., 2022), distributional metrics (Minixhofer
147 et al., 2024), and accuracy metrics (Ali and
148 Renals, 2018). These metrics are nearly saturated
149 for recent state-of-the-art systems (Ju et al.,
150 2024). Follow-up benchmarks (Huang et al., 2025;
151 Anastassiou et al., 2024) increase difficulty via
152 harder texts or controllability, but remain sentence
153 level and are not directly suitable for long-form
154 speech (Clark et al., 2019). Long text test sets
155 like MinutesSpeech- (Nishimura et al., 2024) and
156 LibriSpeech-Long (Park et al., 2024) partially ad-
157 dress this gap, yet cover only a narrow range of sce-
158 narios, as shown in Table 1. Benchmarks for dialog
159 models also face similar issues (Ao et al., 2024).
160 Moreover, existing protocols rely heavily on subjec-
161 tive evaluations (Cambre et al., 2020; Zhang et al.,
162 2023), which do not scale and lack standardized
163 procedures. In contrast, LFS-Bench jointly covers
164 long-form speech and dialog generation, spans 17
165 scenarios, and provides comprehensive automatic
166 metrics aligned with humans, thereby addressing
167 key limitations of current evaluation practices.
168

169 3 LFS-Bench

170 3.1 Overview

171 Long-form speech generation requires multi-
172 dimensional evaluation to ensure immersion and
173 realism. For instance, in an online education sce-
174 nario, a generated lecture must not only preserve
175 timbre and acoustic environment (acoustics) but
176 also deliver accurate content with natural pacing
177 (semantics), while exhibiting dynamic variations
178 to sustain engagement (expressiveness). Motivated
179 by these requirements, we propose LFS-Bench, a
180 hierarchical benchmark comprising 1,101 samples
181 across 17 downstream applications. And as de-
182 tailed in Section 3.4, our evaluation protocol is
183 organized around three primary dimensions:

184 **Acoustics Challenge** focuses on sound quality,
185 environmental fidelity, and speaker identity. Hence,

186 we carefully curate samples from six relevant sce-
187 narios: customer service, podcast, chat, debate,
188 audiobook, and interview, and evaluate acoustic
189 performance based on *timbre consistency*, *reverb*
190 *consistency*, and *sound fidelity*.

191 **Semantics Challenge** targets correctness and
192 fluency to probe the upper limits of semantic mod-
193 eling. We derive complex test cases from five
194 information-dense scenarios (lesson, popular sci-
195 ence, presentation, seminar, and news), evaluating
196 them by *content accuracy* and *prosodic coherence*.

197 **Expressiveness Challenge** addresses the issues
198 of flat emotion and low engagement in long-form
199 speech. We incorporate highly expressive scenar-
200 ios such as drama, talk show, hosting, speech, live
201 streaming, and sportscast. Performance is assessed
202 through *expressive richness* (sentence-level emo-
203 tional impact) and *expressive hierarchy* (paragraph-
204 level expressive dynamics).

205 3.2 Data Collection

206 To provide a high-quality benchmark, we curate
207 the test samples from three sources: online text
208 corpora, online audio media, and LLM generation.

209 **Online Text Corpora** For scenarios such as audi-
210 books, drama, and news, where abundant tran-
211 scripts are available online, we directly construct
212 test sets from the web. After crawling the raw
213 data, we clean irrelevant content such as illegal
214 characters, and normalize the text into a clear and
215 readable format. We then employ human annota-
216 tors to proofread the transcripts and add speaker
217 labels, yielding the final curated test samples.

218 **Online Audio Media** This source constitutes
219 the main component of LFS-Bench. For web au-
220 dio data, after crawling, we first denoise the raw
221 audio (Wang and Tian, 2025), and then use DNS-
222 MOS (Reddy et al., 2021) scores to filter out low-
223 quality cases. After that, speaker diarization is
224 conducted (Zheng et al., 2023) to obtain audio
225 segments for each speaker. Finally, we use Sen-
226 seVoice (An et al., 2024) to transcribe audio clips.
227 Upon completion of the script processing, we per-
228 form manual verification to correct errors from the
229 previous steps and curate the final test samples.

230 **LLM generation** We use GPT-5 (OpenAI, 2025)
231 to augment our test set and increase the diversity of
232 data sources. Specifically, we first design prompts
233 that include scenario, topic, and task information.
234 Then we use them to guide the LLM to generate
235 high-quality test cases. All generated samples are
236 then checked and verified by human annotators.

Figure 2: **Overview of dataset construction and refinement.** The process consists of four stages: 1) Formulating LFS-Bench based on three core challenges; 2) Selecting 17 downstream speech scenarios aligned with these challenges; 3) Designing a hybrid data collection pipeline; 4) Performing data refinement on the constructed dataset.

3.3 Data Refinement

To ensure the quality of curated samples, we implement a rigorous refinement pipeline. The process begins with semantic de-duplication, where we employ GPT-5 to extract topics, keywords, and summaries for each sample. These fields are concatenated and encoded using SentenceBERT (Reimers and Gurevych, 2019) to identify and remove highly similar instances based on cosine similarity. Subsequently, we filter for content quality by leveraging GPT-5 to evaluate expression clarity and content coherence, discarding any samples that fall below predefined thresholds. To address privacy and ethical concerns, we utilize DeepSeek V3.2 (Liu et al., 2024a) with a chain-of-thought (Wei et al., 2022) procedure to detect potential leaks, revise sensitive content, and eliminate samples posing social or ethical risks. Finally, we conduct a manual review to purge remaining low-quality samples and replenish the dataset, ultimately yielding 1,101 samples that cover three core challenges and span 17 downstream scenarios, as shown in the left side of Fig. 1.

3.4 Evaluation Metrics

We disentangle the challenges into seven objective metrics to comprehensively assess the performance of TTS models. More details in Appendix C.

Timbre Consistency. Compared with prior work that evaluates zero-shot capability using speaker similarity, we directly measure within-utterance timbre consistency to assess a model’s ability to maintain or switch speaker identity. For

single-speaker long-form speech w , we apply a sliding window over the waveform and extract a speaker embedding for each window, yielding a sequence $\{e_i\}_{i=1}^n$, where n is the number of windows. We then compute the cosine similarity for every pair of distinct embeddings and take the average of the resulting similarity sequence $\{\text{sim}_{i,j}\}_{i,j=1, i \neq j}^n$ as the measure of timbre consistency. For dialog, we first use forced alignment (McAuliffe et al., 2017) to obtain segments of each speaker. The final metric is obtained by averaging the consistency scores of individual speakers.

Reverb Consistency. We assess whether synthesized audio maintains a stable acoustic environment by measuring the consistency of reverberation over time. For a generated utterance w , we apply a sliding window over the waveform and compute the speech-to-reverberation modulation energy ratio (SRMR) for each window, obtaining a sequence of reverberation scores $\{r_i\}_{i=1}^n$. We then compute the standard deviation of this sequence, which serves as our reverb consistency metric; lower variance indicates a more consistent reverberation pattern across the utterance.

Sound Fidelity. We evaluate the perceptual quality and clarity of the generated speech using the Perceptual Evaluation of Speech Quality (PESQ) metric. Given that standard PESQ requires a reference signal unavailable in our setting, we employ SQUIM-PESQ to perform non-intrusive, reference-free evaluation for the synthesized audio.

Content Accuracy. Faithful content rendering

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

300 is a cornerstone of robust TTS systems. To investigate the impact of long-sequence modeling on
301 content fidelity, we employ an ASR-based evaluation, calculating the Word Error Rate (Character
302 Error Rate for Chinese) between the transcripts of
303 the synthesized audio and the ground truth text.
304

305 **Prosodic Coherence.** While content accuracy
306 ensures lexical correctness, prosodic coherence
307 evaluates the naturalness of delivery. This metric
308 focuses on pauses, speaking rate, and the
309 consistency of overall prosody to capture the
310 naturalness of generated speech. LFS-Bench
311 leverages SpeechJudge (Zhang et al., 2025b), a scoring
312 model fine-tuned from Qwen2.5-Omni-7B (Xu
313 et al., 2025a). We refine the input prompt to
314 strengthen the model’s sensitivity to prosodic
315 consistency in long-form contexts, utilizing the resulting
316 scalar score (1–5) as our metric for coherence.
317

318 **Expressive Richness.** In long-form synthesis,
319 expressiveness becomes crucial, as monotonous
320 delivery fails to sustain user engagement or support
321 immersive experiences. To address this need, LFS-
322 Bench evaluates expressive richness along three
323 dimensions: emotional resonance, character por-
324 trayal, and storytelling. Following EmergentTTS-
325 Eval (Manku et al., 2025), we employ LALMs as
326 evaluators using a comprehensive prompt to score
327 audio on a 1–5 scale. To ensure fine-grained assess-
328 ment, we segment inputs into 10-second intervals
329 and calculate the average score across all segments.
330

331 **Expressive Hierarchy.** Beyond sentence-level
332 expressiveness, paragraph-level expressive hierar-
333 chy is a defining characteristic of long-form speech.
334 We employ LALMs to evaluate this attribute on
335 a scale of 1 to 5, designing prompts that specifi-
336 cally target emotional variation, vocal dynamics,
337 and scene appropriateness. Crucially, we evaluate
338 the full utterance rather than via segmentation to
339 preserve the integrity of the narrative flow.

340 3.5 Human Perception Alignment Test

341 To further validate the effectiveness of our evalua-
342 tion protocol, we conduct a subjective assessment
343 in which human raters score a randomly selected
344 subset of the test data. Additional implementation
345 details and results are provided in the Appendix D.

346 **Prosody Evaluation.** We randomly sample 50
347 pairs of audio clips, each synthesized from identical
348 text by different models, and conduct a subjective
349 preference test with 10 human evaluators. For each
350 pair (A, B) , raters assess the comparative prosodic
351 coherence on a 5-point scale ranging from -2 to 2.

352 The human preference score is defined as:

$$\mathcal{S}_{\text{pref}}(A, B) = \frac{1}{N} \sum_{i=1}^N s_i, \quad (1)$$

353 where s_i denotes the score assigned by the i -th
354 rater, and N represents the total number of raters.
355 We compute the Spearman Rank Correlation Coef-
356 ficient (SRCC) between human preference scores
357 and the differential of our metric. The SRCC of
358 0.82 shows that our metric effectively captures the
359 perceived prosodic coherence of long-form speech.
360

361 **Expressiveness Evaluation.** We randomly sam-
362 ple 200 audio clips across all models and tasks,
363 recruiting 10 human evaluators to score each sam-
364 ple, strictly adhering to the same expressiveness
365 prompts used for the LALM evaluation. In parallel,
366 we benchmark three MOS prediction networks and
367 six LALMs by computing the correlation between
368 their predicted scores and the human Mean Opin-
369 ion Scores (MOS). Finally, we select Gemini3-Pro
370 as our primary evaluator, due to its highest align-
371 ment with human judgment, yielding SRCC scores
372 of 0.71 for expressive richness and 0.62 for expres-
373 sive hierarchy. We also validate the stability of
374 Gemini 3 Pro through independent repeated trials.
375 More results are detailed in Appendix D.4.

376 4 Experiments

377 4.1 Settings

378 **Model Evaluated** For single-speaker long-
379 form speech, we evaluate ten open-source mod-
380 els: ZipVoice (Zhu et al., 2025b), Spark-
381 TTS (Wang et al., 2025), CosyVoice2-0.5B (Du
382 et al., 2024), CosyVoice3-0.5B (Du et al., 2025),
383 GLM-TTS (Cui et al., 2025), MegaTTS3 (Jiang
384 et al., 2025), IndexTTS2 (Zhou et al., 2025b),
385 FishSpeech-1.5 (Liao et al., 2024), F5TTS (Chen
386 et al., 2024c), and VibeVoice (Peng et al., 2025).
387 And we evaluate six closed-source flagship sys-
388 tems: Gemini-2.5-pro-preview-tts, OpenAI-tts-
389 1-hd, ElevenLabs Multilingual V2, Minimax-
390 speech-02-hd (Zhang et al., 2025a), InWorld-
391 TTS-1-max (Atamanenko et al., 2025), and Seed-
392 TTS2 (Anastassiou et al., 2024). In the dia-
393 logue generation setting, we select six open-source
394 models capable of long-form synthesis—ZipVoice-
395 Dialog (Zhu et al., 2025a), MoonCast (Ju et al.,
396 2025), MOSS-TTSD (Zhao et al., 2025), Fir-
397 eRedTTS2 (Xie et al., 2025b), VibeVoice, and
398 SoulX-Podcast (Xie et al., 2025a)—and compare
399

Table 2: **Evaluation results of long-form TTS models across multi-dimensional metrics.** Metrics cover Acoustics (Timbre/Reverb Consistency, Fidelity), Semantics (Content Accuracy, Prosodic Coherence), and Expressiveness (Richness, Hierarchy). CER and WER apply to Chinese and English, respectively. Closed-source models and open-source models are separately marked, with the best results in **bold** and the second best underlined.

Model	Acoustics			Semantics		Expressiveness	
	Timbre(\uparrow)	Reverb(\downarrow)	Sound Fidelity(\uparrow)	CER/WER(\downarrow)	Prosody(\uparrow)	Richness(\uparrow)	Hierarchy(\uparrow)
<i>Open-Source Models</i>							
CosyVoice-2	0.92 \pm 0.018	2.35 \pm 0.78	3.80 \pm 0.27	0.032 / 0.168	3.23 \pm 1.01	3.02 \pm 0.68	2.76 \pm 0.88
CosyVoice-3	0.94 \pm 0.008	2.26 \pm 0.59	3.83 \pm 0.10	0.034 / 0.141	3.31 \pm 0.71	2.80 \pm 0.70	2.45 \pm 0.75
FishSpeech	0.93 \pm 0.014	1.79 \pm 0.65	4.10 \pm 0.09	0.043 / 0.113	<u>3.80</u> \pm 0.86	2.66 \pm 0.78	2.90 \pm 0.74
F5TTS	0.90 \pm 0.022	1.82 \pm 0.77	3.39 \pm 0.33	0.072 / 0.113	3.41 \pm 0.99	3.07 \pm 0.63	2.77 \pm 0.84
GLM-TTS	0.94 \pm 0.010	1.62 \pm 0.61	<u>3.95</u> \pm 0.13	0.035 / 0.118	3.64 \pm 0.87	2.68 \pm 0.71	2.54 \pm 0.88
IndexTTS-2	0.94 \pm 0.008	<u>1.72</u> \pm 0.53	2.77 \pm 0.41	0.033 / 0.135	3.64 \pm 0.52	<u>3.59</u> \pm 0.72	<u>2.96</u> \pm 0.81
MegaTTS-3	0.93 \pm 0.008	1.81 \pm 0.45	3.55 \pm 0.19	0.035 / 0.108	3.61 \pm 0.84	2.81 \pm 0.55	2.53 \pm 0.63
SparkTTS	0.93 \pm 0.033	1.79 \pm 1.70	3.59 \pm 0.40	0.329 / 0.240	2.58 \pm 1.24	3.47 \pm 0.58	2.38 \pm 0.83
VibeVoice	0.93 \pm 0.024	2.15 \pm 0.88	3.82 \pm 0.42	0.047 / <u>0.111</u>	3.90 \pm 0.79	3.71 \pm 0.58	3.34 \pm 0.88
ZipVoice	0.90 \pm 0.011	2.06 \pm 1.08	3.51 \pm 0.19	0.072 / 0.396	3.19 \pm 1.11	2.44 \pm 0.85	2.11 \pm 1.05
Average	0.93	1.95	3.63	0.073 / 0.164	3.43	3.03	2.67
<i>Closed-Source models</i>							
Elevenlabs Multilingual V2	0.96 \pm 0.008	3.05 \pm 0.59	4.02 \pm 0.11	0.100 / 0.115	3.50 \pm 0.73	2.33 \pm 0.74	2.68 \pm 0.81
Gemini-2.5-pro-preview-tts	0.91 \pm 0.018	<u>1.44</u> \pm 0.50	3.16 \pm 0.36	0.058 / 0.169	3.91 \pm 0.72	4.14 \pm 0.65	3.51 \pm 0.84
Inworld-TTS-1-max	0.93 \pm 0.025	2.19 \pm 0.64	3.73 \pm 0.17	0.053 / 0.113	3.71 \pm 0.51	3.68 \pm 0.86	3.03 \pm 0.92
Minimax-Speech-02-hd	0.93 \pm 0.010	1.38 \pm 0.35	3.82 \pm 0.09	0.032 / 0.119	3.95 \pm 0.73	<u>3.80</u> \pm 0.44	<u>3.26</u> \pm 0.79
OpenAI-tts-01-hd	0.92 \pm 0.011	1.74 \pm 0.42	2.68 \pm 0.12	<u>0.043</u> / 0.119	<u>3.91</u> \pm 0.52	<u>3.46</u> \pm 0.62	<u>3.25</u> \pm 0.81
SeedTTS-2	0.94 \pm 0.022	1.95 \pm 0.74	<u>3.88</u> \pm 0.18	0.106 / 0.193	3.74 \pm 0.44	3.10 \pm 0.80	2.34 \pm 0.65
Average	0.93	1.96	3.55	0.065 / 0.138	3.79	3.42	3.01
Real Speech	0.96	1.91	3.62	0.070 / 0.074	4.04	4.35	3.94

them with four closed-source baselines: Gemini-2.5-pro-preview-tts, OpenAI-tts-1-hd, ElevenLabs Multilingual V2, and SeedTTS-Podcast.

Evaluation Models For the timbre consistency evaluation, we use WavLM TDCNN¹ to extract speaker embeddings, and perform forced alignment with Paraformer² on Chinese data and WhisperX (Bain et al., 2023) on English data. For WER computation, we adopt FunASR Nano³ as the transcription model. For all expressiveness-related metrics, we use Gemini3-pro (Google DeepMind, 2025) with prompt enhancement as the evaluator.

4.2 Evaluation from Different Perspectives

Per-Dimension Evaluation We demonstrate LFS-Bench scores across all dimensions following the evaluation protocol outlined in Section 3.4, with results summarized in Tables 2 and 3. Additionally, we incorporate two reference baselines: *Real Speech* and *Real Dialogue*, which are derived from the source dataset in Section 3.2, serving as the topological upper bound for audio quality.

Per-Scenario Evaluation We evaluate the long-form speech and dialog generation models across

three core categories spanning 17 different scenarios, and then calculate their performance via the evaluation protocol. Fig. 3 visualizes the evaluation results of each model in terms of three categories.

Evaluations On Generated Length We evaluate five representative models (MegaTTS3, F5TTS, Cosyvoice2, SparkTTS, and VibeVoice) across increasing input lengths among 100 samples in three core scenarios (Acoustics, Semantics, and Expressiveness). The results are shown in Fig 4.

5 Insights and Discussions

5.1 Observations

Gap to Ground-Truth Audio As shown in Tables 2 and 3, among the evaluated systems, *VibeVoice* and *SoulX-Podcast* emerge as the strongest open-source models, while *Minimax-Speech-02-hd* and *Gemini-2.5-pro-preview-tts* lead their proprietary counterparts. We also observe that, although SOTA open-source models already match or even surpass the best proprietary systems on several evaluation dimensions, Proprietary models still exhibit consistently stronger overall performance than open-source models for long-form speech generation. However, benchmarking against real recordings reveals persistent and systematic gaps. For long-form synthesized speech, even the best-performing models remain below human speech in overall expressiveness: the closed-

¹https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification

²https://modelscope.cn/models/iic/speech_timestamp_prediction-v1-16k-offline

³<https://huggingface.co/FunAudioLLM-Fun-ASR-Nano-2512>

Table 3: **Results of dialogue generation models across LFS-Bench’s metrics.** The performance of closed-source models and open-source models is separately marked, with the best results in **bold** and the second best underlined.

Model	Acoustics			Semantics		Expressiveness	
	Timbre(\uparrow)	Reverb(\downarrow)	Sound Fidelity(\uparrow)	CER/WER(\downarrow)	Prosody(\uparrow)	Richness(\uparrow)	Hierarchy(\uparrow)
<i>Open-Source Models</i>							
FireRedTTS-2	0.93 \pm 0.017	3.48 \pm 1.06	2.62 \pm 0.69	0.075 / 0.131	3.24 \pm 1.04	2.72 \pm 0.75	2.81 \pm 0.97
MoonCast	0.90 \pm 0.022	3.06 \pm <u>1.84</u>	2.62 \pm 0.37	0.313 / 0.125	3.16 \pm 1.18	2.68 \pm 0.68	2.70 \pm 0.99
MOSS-TTSD	0.91 \pm 0.028	3.55 \pm 1.16	2.89 \pm 0.55	0.148 / 0.239	2.79 \pm 1.14	3.21 \pm 0.79	2.99 \pm 1.06
SoulIX-Podcast	0.93 \pm <u>0.016</u>	3.51 \pm 0.80	3.96 \pm <u>0.09</u>	0.061 / <u>0.090</u>	4.01 \pm <u>0.78</u>	<u>3.44</u> \pm 0.69	3.71 \pm <u>0.81</u>
VibeVoice	0.91 \pm 0.028	3.59 \pm 0.85	3.35 \pm 0.72	0.106 / 0.125	3.57 \pm 1.05	3.76 \pm <u>0.63</u>	3.37 \pm 0.83
ZipVoice-Dialog	0.91 \pm 0.021	3.53 \pm 0.85	2.66 \pm 0.24	0.069 / <u>0.114</u>	3.67 \pm 0.89	2.62 \pm 0.60	2.80 \pm 0.88
Average	0.92	3.45	3.02	0.129 / 0.137	3.41	3.07	3.06
<i>Closed-Source models</i>							
Elevenlabs Multilingual V2	0.93 \pm 0.016	4.43 \pm 1.01	3.48 \pm <u>0.44</u>	0.127 / 0.109	3.67 \pm 0.78	2.84 \pm 0.79	3.46 \pm 0.87
Gemini-2.5-pro-preview-tts	0.92 \pm 0.017	3.17 \pm 0.68	<u>3.01</u> \pm 0.24	<u>0.086</u> / 0.092	4.06 \pm <u>0.39</u>	4.06 \pm <u>0.48</u>	4.02 \pm <u>0.68</u>
OpenAI-tts-1-hd	0.93 \pm <u>0.013</u>	2.98 \pm 0.63	2.28 \pm 0.17	0.104 / 0.103	3.69 \pm 0.62	3.29 \pm 0.75	3.70 \pm 0.88
SeedTTS-Podcast	0.91 \pm 0.017	2.85 \pm <u>0.78</u>	3.89 \pm <u>0.17</u>	0.063 / 0.108	<u>3.93</u> \pm 0.46	<u>3.84</u> \pm 0.72	<u>3.84</u> \pm 0.88
Average	0.92	3.36	3.17	0.095 / 0.103	3.83	3.51	3.76
Real Dialogue	0.95	2.73	2.94	0.050 / 0.137	3.95	4.42	4.17

source average lags behind real speech by nearly one MOS point in richness and over half a point in hierarchy. A similar pattern holds in dialog scenarios, where closed-source systems obtain higher expressiveness, but still fall short of the natural expressivity implied by real dialogue. In acoustic metrics, synthesized speech approaches real recordings in Fidelity, but long-form outputs show a deficit in Timbre Consistency. For dialog generation, the marked gap in Reverb Consistency (3.36 vs. 2.73) underscores a core challenge: sustaining global acoustic consistency across multiple speakers. In terms of Semantics, current models achieve Content Accuracy comparable to real speech, demonstrating strong capability in pronunciation. Nevertheless, deficiencies in prosodic coherence persist, limiting the naturalness of the synthesized audio.

Impact of Scenarios. As illustrated in Figure 3, downstream scenarios significantly impact generation performance. *Acoustic challenge scenarios* present distinct difficulties, particularly in maintaining acoustic field consistency. This struggle likely stems from frequent speaker transitions that disrupt reverberation unity, also causing minor fidelity degradation. Notably, however, timbre consistency remains stable, demonstrating the robustness of current models in this dimension. For *semantic-dominated scenarios*, linguistic complexity in semantic-dominated scenarios does not compromise content accuracy, thanks to robust text normalization. However, it poses substantial challenges to prosody modeling, indicating a need for improved comprehension of intricate syntactic structures. An intriguing finding emerges in *expressiveness settings*. Here, all models exhibit perfor-

mance degradation across nearly all metrics, particularly in Expressive Richness. Theoretically, these scenarios should represent a higher upper bound for expressiveness. Consequently, this counter-intuitive performance suggests that models may lack effective training on expressive data. Furthermore, it highlights the substantial gap remaining in achieving immersive and expressive generation. More data support, experimental results, and detailed analysis can be found in Appendix G.2.

5.2 Discussions

AR v.s. NAR In long-form TTS, the choice between AR and NAR paradigms centers on the trade-off between expressiveness and robustness. NAR models, leveraging parallel generation mechanisms, demonstrate superior robustness and efficiency in long-text synthesis (Ren et al., 2020). However, they tend to produce over-smoothed rhythms, often failing to capture the vocal dynamics and emotional nuances required for extended narration. As observed in Table 2 and 3, F5TTS, despite being the top-performing NAR model, lags significantly behind most AR counterparts in expressive hierarchy. Similarly, ZipVoice-Dialog ranks among the lowest in expressiveness within the dialogue category. Conversely, AR models, typically built upon language model backbones, excel in prosody modeling but suffer from error propagation in long-form scenarios. While they achieve superior expressiveness, they exhibit a lower bound on Content Accuracy; for instance, both SparkTTS and MoonCast show suboptimal performance in this dimension. Furthermore, as illustrated in Figure 4, SparkTTS suffers from a substantial decline in con-

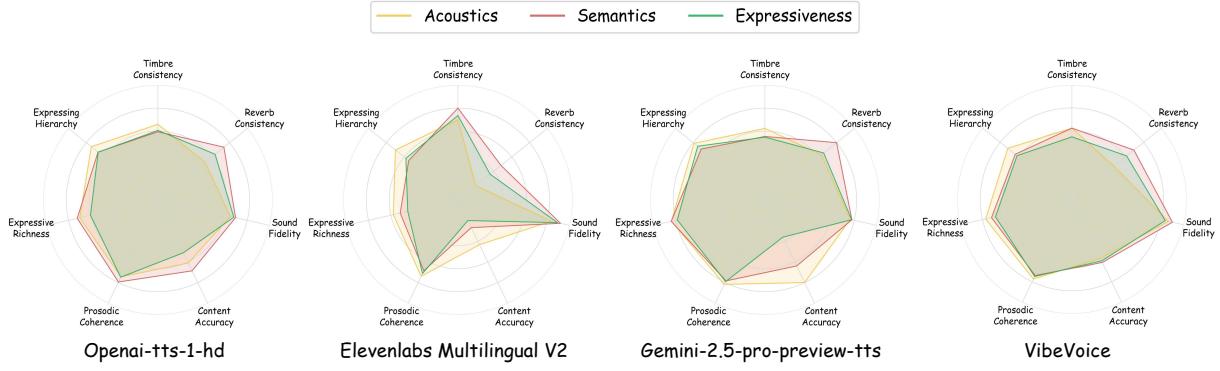


Figure 3: **LFS-Bench Results across Three Core Challenges.** For each chart, we plot the evaluation results across three core challenges. The results are normalized between 1 and 5 (larger is better) for visibility across challenges.

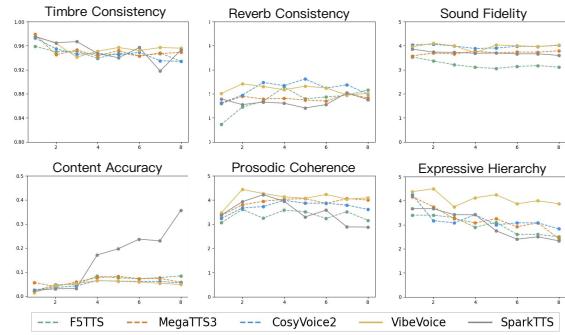


Figure 4: **Results on Sequence Length.** The horizontal axis represents the number of sentences in the text.

tent accuracy as sequence length increases, whereas NAR models maintain stability without significant degradation. Consequently, we propose that future long-form TTS architectures should evolve beyond this binary choice toward a Coarse-to-Fine Architecture (Kharitonov et al., 2023; Ju et al., 2024), thereby effectively reconciling long-range semantic coherence with local generation stability.

Data Quality v.s. Data Quantity While scaling laws have advanced speech synthesis by leveraging more data and bigger parameters (Du et al., 2025), our analysis suggests that relying solely on mainstream datasets presents three critical impediments to long-form audio generation: 1) **Fragmentation in open-source data** (Chen et al., 2021) induces a short-form bias that compromises discourse coherence. For instance, SparkTTS is trained on VoxBox, a dataset characterized by an average segment duration of less than 10 seconds. Consequently, the model exhibits significant degradation in both content accuracy and prosodic coherence as the generation length extends, as illustrated in Figure 4; 2) **Acoustic instability** in web-crawled data (He et al., 2024), such as variable noise and recording conditions, triggers acoustic drift. For example,

CosyVoice3 utilizes extensive in-the-wild data for training. As a result, it significantly lags behind other models in reverb consistency, as shown in Table 2; and 3) The **averaging effect** of scaling enhances generalization but homogenizes expressiveness. As shown in Table 2, flagship models such as GLM-TTS and FishSpeech excel in acoustic metrics. However, they underperform in the expressiveness dimension despite their large scale. Consequently, they fail to capture the dynamic nuances required for narration. Therefore, the path forward requires a strategic shift towards prioritizing data quality and temporal continuity over raw quantity. We advocate for the adoption of curriculum-learning strategies (Wang et al., 2021) that progressively transition from sentence-level to paragraph-level training. By leveraging high-fidelity, long-context recordings, future models can more effectively capture the long-range dependencies essential for coherent and expressive narration.

6 Conclusion

In this work, we present LFS-Bench, a holistic benchmark tailored for evaluating long-form TTS models. LFS-Bench addresses three core challenges in long-form generation, encompassing 1,101 carefully curated instances across 17 downstream scenarios. To facilitate precise and automatic assessment, we propose a disentangled, human-aligned evaluation protocol featuring seven complementary metric dimensions. Through extensive benchmarking of over 20 models, we provide an in-depth analysis of current capabilities and limitations from the perspectives of model architectures as well as training data and strategy. We envision LFS-Bench as a standardized testbed for future research, propelling the development of more robust and immersive long-form speech synthesis.

580 Limitations

581 We identify three limitations in this work. First,
582 the linguistic scope of LFS-Bench is currently
583 restricted to Chinese and English, leaving low-
584 resource languages and diverse dialects or accents
585 underexplored. Second, our investigation into se-
586 mantics remains preliminary; while LFS-Bench’s
587 evaluation metrics prioritize acoustic coherence,
588 we lack a robust automated framework to assess
589 emotional and stylistic transitions grounded in deep
590 semantic understanding of long-form text. Finally,
591 the prompt speech utilized in our experiments is
592 derived from only 20 speakers from open-source
593 datasets. This limited speaker diversity may in-
594 troduce evaluation bias, and we encourage the re-
595 search community to contribute additional data
596 to facilitate a more comprehensive assessment of
597 model generalization.

598 Ethical considerations

599 Although this work itself raises no immediate ethi-
600 cal concerns, two potential risks must be addressed
601 when applying our benchmark. First, when utili-
602 zing our benchmark for evaluation, users must en-
603 sure that the prompt speech does not infringe upon
604 the rights of the original voice actors. The use of
605 audio from unverified sources or those restricted by
606 regulations is strictly prohibited. Second, while our
607 objective is to enhance the holistic performance of
608 long-form synthesis, practitioners must ensure that
609 models trained or evaluated using our methods are
610 not deployed for generating disinformation, such
611 as fabricated news reports or unauthorized politi-
612 cal speeches. To mitigate these risks, we intend
613 to implement strict usage guidelines upon open-
614 sourcing the benchmark to prevent unethical and
615 unauthorized applications.

616 References

617 Ahmed Ali and Steve Renals. 2018. Word error rate
618 estimation for speech recognition: e-wer. In *Pro-
619 ceedings of the 56th Annual Meeting of the Association for
620 Computational Linguistics (Volume 2: Short Papers)*,
621 pages 20–24.

622 Keyu An, Qian Chen, Chong Deng, Zhihao Du,
623 Changfeng Gao, Zhifu Gao, Yue Gu, Ting He,
624 Hangrui Hu, Kai Hu, et al. 2024. Funaudiollm: Voice
625 understanding and generation foundation models for
626 natural interaction between humans and llms. *arXiv*
627 preprint *arXiv:2407.04051*.

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong, Lelai Deng, Chuang Ding, Lu Gao, et al. 2024. Seed-tts: A family of high-quality versatile speech generation models. <i>arXiv preprint arXiv:2406.02430</i> .	628
Junyi Ao, Yuancheng Wang, Xiaohai Tian, Dekun Chen, Jun Zhang, Lu Lu, Yuxuan Wang, Haizhou Li, and Zhizheng Wu. 2024. Sd-eval: A benchmark dataset for spoken dialogue understanding beyond words. <i>Advances in Neural Information Processing Systems</i> , 37:56898–56918.	629
Oleg Atamanenko, Anna Chalova, Joseph Coombes, Nikki Cope, Phillip Dang, Zhifeng Deng, Jimmy Du, Michael Ermolenko, Feifan Fan, Yufei Feng, et al. 2025. Tts-1 technical report. <i>arXiv preprint arXiv:2507.21138</i> .	630
Kaito Baba, Wataru Nakata, Yuki Saito, and Hiroshi Saruwatari. 2024. The t05 system for the voicemos challenge 2024: Transfer learning from deep image classifier to naturalness mos prediction of high-quality synthetic speech. In <i>2024 IEEE Spoken Language Technology Workshop (SLT)</i> , pages 818–824.	631
Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, et al. 2024. Longbench: A bilingual, multitask benchmark for long context understanding. In <i>Proceedings of the 62nd annual meeting of the association for computational linguistics (volume 1: Long papers)</i> , pages 3119–3137.	632
Max Bain, Jaesung Huh, Tengda Han, and Andrew Zisserman. 2023. Whisperx: Time-accurate speech transcription of long-form audio. <i>INTERSPEECH 2023</i> .	633
Zalán Borsos, Matt Sharifi, Damien Vincent, Eugene Kharitonov, Neil Zeghidour, and Marco Tagliasacchi. 2023. Soundstorm: Efficient parallel audio generation. <i>arXiv preprint arXiv:2305.09636</i> .	634
Julia Cambre, Jessica Colnago, Jim Maddock, Janice Tsai, and Jofish Kaye. 2020. Choice of voices: A large-scale evaluation of text-to-speech voice quality for long-form content. In <i>Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems</i> .	635
Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang, Yao Wan, Pan Zhou, and Lichao Sun. 2024a. Milm-as-a-judge: Assessing multimodal llm-as-a-judge with vision-language benchmark. In <i>Forty-first International Conference on Machine Learning</i> .	636
Guoguo Chen, Shuzhou Chai, Guanbo Wang, Jiayu Du, Wei-Qiang Zhang, Chao Weng, Dan Su, Daniel Povey, Jan Trmal, Junbo Zhang, et al. 2021. Gigaspeech: An evolving, multi-domain asr corpus with 10,000 hours of transcribed audio. <i>arXiv preprint arXiv:2106.06909</i> .	637
Sanyuan Chen, Shujie Liu, Long Zhou, Yanqing Liu, Xu Tan, Jinyu Li, Sheng Zhao, Yao Qian, and Furu	638

684	Wei. 2024b. Vall-e 2: Neural codec language models are human parity zero-shot text to speech synthesizers. <i>arXiv preprint arXiv:2406.05370</i> .	737
685		738
686		739
687		740
688		741
689		
690		
691		
692		
693		
694		
695		
696		
697		
698		
699		
700		
701		
702		
703		
704		
705		
706		
707		
708		
709		
710		
711		
712		
713		
714		
715		
716		
717		
718		
719		
720		
721		
722		
723		
724		
725		
726		
727		
728		
729		
730		
731		
732		
733		
734		
735		
736		
737	Hao-Han Guo, Kun Liu, Fei-Yu Shen, Yi-Chen Wu, Feng-Long Xie, Kun Xie, and Kai-Tuo Xu. 2024b. Firedtts: A foundation text-to-speech framework for industry-level generative speech applications. <i>arXiv preprint arXiv:2409.03283</i> .	741
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749	Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen Yang, Jiaqi Li, Peiyang Shi, et al. 2024. Emilia: An extensive, multilingual, and diverse speech dataset for large-scale speech generation. In <i>2024 IEEE Spoken Language Technology Workshop (SLT)</i> , pages 885–890.	750
750		
751		
752		
753		
754		
755	Kexin Huang, Qian Tu, Liwei Fan, Chenchen Yang, Dong Zhang, Shimin Li, Zhaoye Fei, Qinyuan Cheng, and Xipeng Qiu. 2025. Instructtseval: Benchmarking complex natural-language instruction following in text-to-speech systems. <i>arXiv preprint arXiv:2506.16381</i> .	755
756		
757		
758		
759		
760	Hieu-Nghia Huynh-Nguyen, Ngoc Son Nguyen, Huynh Nguyen Dang, Thieu Vo, Truong-Son Hy, and Van Nguyen. 2025. Ozspeech: One-step zero-shot speech synthesis with learned-prior-conditioned flow matching. <i>arXiv preprint arXiv:2505.12800</i> .	755
761		
762		
763		
764		
765		
766	Ziyue Jiang, Yi Ren, Ruiqi Li, Shengpeng Ji, Boyang Zhang, Zhenhui Ye, Chen Zhang, Bai Jionghao, Xiaoda Yang, Jialong Zuo, et al. 2025. Megatts 3: Sparse alignment enhanced latent diffusion transformer for zero-shot speech synthesis. <i>arXiv preprint arXiv:2502.18924</i> .	766
767		
768		
769		
770		
771		
772		
773	Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong Leng, Kaitao Song, Siliang Tang, et al. 2024. Natural-speech 3: zero-shot speech synthesis with factorized codec and diffusion models. In <i>Proceedings of the 41st International Conference on Machine Learning</i> , pages 22605–22623.	766
774		
775		
776		
777		
778	Zeqian Ju, Dongchao Yang, Jianwei Yu, Kai Shen, Yichong Leng, Zhengtao Wang, Xu Tan, Xinyu Zhou, Tao Qin, and Xiangyang Li. 2025. Mooncast: High-quality zero-shot podcast generation. <i>arXiv preprint arXiv:2503.14345</i> .	773
779		
780		
781		
782		
783		
784		
785	Eugene Kharitonov, Damien Vincent, Zalán Borsos, Raphaël Marinier, Sertan Girgin, Olivier Pietquin, Matt Sharifi, Marco Tagliasacchi, and Neil Zeghidour. 2023. Speak, read and prompt: High-fidelity text-to-speech with minimal supervision. <i>Transactions of the Association for Computational Linguistics</i> , 11:1703–1718.	778
786		
787	Diederik P Kingma, Max Welling, et al. 2013. Auto-encoding variational bayes.	785
788		
789		
790		
791		
792	Yuma Koizumi, Heiga Zen, Shigeki Karita, Yifan Ding, Kohei Yatabe, Nobuyuki Morioka, Michiel Bacchiani, Yu Zhang, Wei Han, and Ankur Bapna. 2023. Libritts-r: A restored multi-speaker text-to-speech corpus. <i>arXiv preprint arXiv:2305.18802</i> .	787
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		
810		
811		
812		
813		
814		
815		
816		
817		
818		
819		
820		
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		
864		
865		
866		
867		
868		
869		
870		
871		
872		
873		
874		
875		
876		
877		
878		
879		
880		
881		
882		
883		
884		
885		
886		
887		
888		
889		
890		
891		
892		
893		
894		
895		
896		
897		
898		
899		
900		
901		
902		
903		
904		
905		
906		
907		
908		
909		
910		
911		
912		
913		
914		
915		
916		
917		
918		
919		
920		
921		
922		
923		
924		
925		
926		
927		
928		
929		
930		
931		
932		
933		
934		
935		
936		
937		
938		
939		
940		
941		
942		
943		
944		
945		
946		
947		
948		
949		
950		
951		
952		
953		
954		
955		
956		
957		
958		
959		
960		
961		
962		
963		
964		
965		
966		
967		
968		
969		
970		
971		
972		
973		
974		
975		
976		
977		
978		
979		
980		
981		
982		
983		
984		
985		
986		
987		
988		
989		
990		
991		
992		
993		
994		
995		
996		
997		
998		
999		
9999		

792	Anurag Kumar, Ke Tan, Zhaoheng Ni, Pranay Manocha, Xiaohui Zhang, Ethan Henderson, and Buye Xu. 2023. Torchaudio-squim: Reference-less speech quality and intelligibility measures in torchaudio. In <i>ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</i> , pages 1–5.	846
793		847
794		848
795		849
796		
797		
798		
799	Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson, Vimal Manohar, Yossi Adi, Jay Mahadeokar, et al. 2023. Voicebox: Text-guided multilingual universal speech generation at scale. <i>Advances in neural information processing systems</i> , 36:14005–14034.	850
800		851
801		852
802		853
803		854
804		
805	Yinghao Aaron Li, Cong Han, Vinay Raghavan, Gavin Mischler, and Nima Mesgarani. 2024. Styletts 2: Towards human-level text-to-speech through style diffusion and adversarial training with large speech language models. <i>Advances in Neural Information Processing Systems</i> , 36.	855
806		856
807		857
808		858
809		
810		
811	Zhipeng Li, Xiaofen Xing, Jingyuan Xing, Hangrui Hu, Heng Lu, and Xiangmin Xu. 2025. Long-context speech synthesis with context-aware memory. <i>arXiv preprint arXiv:2508.14713</i> .	859
812		860
813		
814		
815	Shijia Liao, Yuxuan Wang, Tianyu Li, Yifan Cheng, Ruoyi Zhang, Rongzhi Zhou, and Yijin Xing. 2024. Fish-speech: Leveraging large language models for advanced multilingual text-to-speech synthesis. <i>arXiv preprint arXiv:2411.01156</i> .	861
816		862
817		863
818		864
819		865
820	Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024a. Deepseek-v3 technical report. <i>arXiv preprint arXiv:2412.19437</i> .	866
821		
822		
823		
824		
825	Rui Liu, Yifan Hu, Yi Ren, Xiang Yin, and Haizhou Li. 2024b. Generative expressive conversational speech synthesis. In <i>Proceedings of the 32nd ACM International Conference on Multimedia</i> , pages 4187–4196.	867
826		868
827		869
828		870
829	Ruskin Raj Manku, Yuzhi Tang, Xingjian Shi, Mu Li, and Alex Smola. 2025. Emergenttts-eval: Evaluating tts models on complex prosodic, expressiveness, and linguistic challenges using model-as-a-judge. <i>arXiv preprint arXiv:2505.23009</i> .	871
830		872
831		873
832		874
833		
834	Luz Martinez-Lucas, Mohammed Abdelwahab, and Carlos Busso. 2020. The msp-conversation corpus. <i>Interspeech 2020</i> .	875
835		876
836		877
837	Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan Sonderegger. 2017. Montreal forced aligner: Trainable text-speech alignment using kaldi. In <i>Interspeech</i> , volume 2017, pages 498–502.	878
838		879
839		880
840		
841		
842	Christoph Minixhofer, Ondřej Klejch, and Peter Bell. 2024. Ttsds-text-to-speech distribution score. In <i>2024 IEEE Spoken Language Technology Workshop (SLT)</i> , pages 766–773.	881
843		882
844		883
845		
522	Christoph Minixhofer, Ondrej Klejch, and Peter Bell. 2025. Ttsds2: Resources and benchmark for evaluating human-quality text to speech systems. <i>arXiv preprint arXiv:2506.19441</i> .	884
523		885
524		886
525		887
526		888
527		
528		
529	Yuto Nishimura, Takumi Hirose, Masanari Ohi, Hideki Nakayama, and Nakamasa Inoue. 2024. Hall-e: hierarchical neural codec language model for minute-long zero-shot text-to-speech synthesis. <i>arXiv preprint arXiv:2410.04380</i> .	889
530		890
531		891
532		892
533		893
534		
535		
536		
537	OpenAI. 2024. Video generation models as world simulators. https://openai.com/index/video-generation-models-as-world-simulators/ . Accessed: 2025-12-25.	894
538		895
539		896
540		897
541		898
542	OpenAI. 2025. Gpt-5. https://chagpt.com/ . Accessed: 2025-12-25.	899
543		900
544		
545	Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015. Librispeech: an asr corpus based on public domain audio books. In <i>2015 IEEE international conference on acoustics, speech and signal processing (ICASSP)</i> , pages 5206–5210. IEEE.	901
546		902
547		903
548		904
549		905
550		906
551		
552	Se Jin Park, Julian Salazar, Aren Jansen, Keisuke Kinoshita, Yong Man Ro, and RJ Skerry-Ryan. 2024. Long-form speech generation with spoken language models. <i>arXiv preprint arXiv:2412.18603</i> .	907
553		908
554		909
555		910
556		
557	Zhiliang Peng, Jianwei Yu, Wenhui Wang, Yaoyao Chang, Yutao Sun, Li Dong, Yi Zhu, Weijiang Xu, Hangbo Bao, Zehua Wang, et al. 2025. Vibevoice technical report. <i>arXiv preprint arXiv:2508.19205</i> .	911
558		912
559		913
560		914
561		
562	Chandan KA Reddy, Vishak Gopal, and Ross Cutler. 2021. Dnsmos: A non-intrusive perceptual objective speech quality metric to evaluate noise suppressors. In <i>ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</i> , pages 6493–6497.	915
563		916
564		917
565		918
566		
567	Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. <i>arXiv preprint arXiv:1908.10084</i> .	919
568		920
569		921
570		922
571		923
572		
573	Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. 2020. Fastspeech 2: Fast and high-quality end-to-end text to speech. In <i>International Conference on Learning Representations</i> .	924
574		925
575		926
576		927
577		928
578		
579	Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hiroshi Saruwatari. 2022. Utmos: Utokyo-sarulab system for voicemos challenge 2022. <i>arXiv preprint arXiv:2204.02152</i> .	929
580		930
581		931
582		932
583		933
584		934
585		
586	Kai Shen, Zeqian Ju, Xu Tan, Eric Liu, Yichong Leng, Lei He, Tao Qin, Sheng Zhao, and Jiang Bian. 2024. Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing synthesizers. In <i>ICLR</i> .	935
587		936
588		937
589		938
590		939
591		

899	Yao Shi, Hui Bu, Xin Xu, Shaoji Zhang, and Ming Li. 2020. Aishell-3: A multi-speaker mandarin tts corpus and the baselines. <i>arXiv preprint arXiv:2010.11567</i> .	954
900		955
901		956
902		957
903	Vaibhav Srivastav, Steven Zheng, Eric Bezzam, Eu-stache Le Bihan, Nithin Koluguri, Piotr Źelasko, Somshubra Majumdar, Adel Moumen, and Sanchit Gandhi. 2025. Open asr leaderboard: Towards reproducible and transparent multilingual and long-form speech recognition evaluation. <i>arXiv preprint arXiv:2510.06961</i> .	958
904		959
905		960
906		961
907		962
908		963
909		964
910	Cees H Taal, Richard C Hendriks, Richard Heusdens, and Jesper Jensen. 2010. A short-time objective intelligibility measure for time-frequency weighted noisy speech. In <i>IEEE international conference on acoustics, speech and signal processing</i> .	965
911		966
912		967
913		968
914		969
915	Fei Tian, Xiangyu Tony Zhang, Yuxin Zhang, Haoyang Zhang, Yuxin Li, Daijiao Liu, Yayue Deng, Donghang Wu, Jun Chen, Liang Zhao, et al. 2025. Step-audio-r1 technical report. <i>arXiv preprint arXiv:2511.15848</i> .	970
916		971
917		972
918		973
919		974
920	Haoxu Wang and Biao Tian. 2025. Zipenhancer: Dual-path down-up sampling-based zipformer for monaural speech enhancement. In <i>ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</i> , pages 1–5.	975
921		976
922		977
923		978
924		979
925	Xin Wang, Yudong Chen, and Wenwu Zhu. 2021. A survey on curriculum learning. <i>IEEE transactions on pattern analysis and machine intelligence</i> , pages 4555–4576.	980
926		981
927		982
928		983
929		984
930	Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, Linqin Li, Zheng Liang, Qixi Zheng, Rui Wang, Xiaoqin Feng, et al. 2025. Spark-tts: An efficient llm-based text-to-speech model with single-stream decoupled speech tokens. <i>arXiv preprint arXiv:2503.01710</i> .	985
931		986
932		987
933		988
934		989
935	Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. <i>Advances in neural information processing systems</i> .	990
936		991
937		992
938		993
939		994
940	Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. 2023. Efficient streaming language models with attention sinks. <i>arXiv preprint arXiv:2309.17453</i> .	995
941		996
942		997
943		998
944		999
945	Hanke Xie, Haopeng Lin, Wenxiao Cao, Dake Guo, Wenjie Tian, Jun Wu, Hanlin Wen, Ruixuan Shang, Hongmei Liu, Zhiqi Jiang, et al. 2025a. Soulx-podcast: Towards realistic long-form podcasts with dialectal and paralinguistic diversity. <i>arXiv preprint arXiv:2510.23541</i> .	1000
946		1001
947		1002
948		1003
949		1004
950	Kun Xie, Feiyu Shen, Junjie Li, Fenglong Xie, Xu Tang, and Yao Hu. 2025b. Fireredtts-2: Towards long conversational speech generation for podcast and chatbot. <i>arXiv preprint arXiv:2509.02020</i> .	1005
951		1006
952		1007
953		1008
		1009
	Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan, Kai Dang, et al. 2025a. Qwen2. 5-omni technical report. <i>arXiv preprint arXiv:2503.20215</i> .	954
		955
		956
		957
	Jin Xu, Zhifang Guo, Hangrui Hu, Yunfei Chu, Xiong Wang, Jinzheng He, Yuxuan Wang, Xian Shi, Ting He, Xinfu Zhu, et al. 2025b. Qwen3-omni technical report. <i>arXiv preprint arXiv:2509.17765</i> .	958
		959
		960
		961
	Binbin Zhang, Hang Lv, Pengcheng Guo, Qijie Shao, Chao Yang, Lei Xie, Xin Xu, Hui Bu, Xiaoyu Chen, Chenchen Zeng, et al. 2022. Wenetspeech: A 10000+ hours multi-domain mandarin corpus for speech recognition. In <i>ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</i> , pages 6182–6186.	962
		963
		964
		965
		966
		967
		968
	Bowen Zhang, Congchao Guo, Geng Yang, Hang Yu, Haozhe Zhang, Heidi Lei, Jialong Mai, Junjie Yan, Kaiyue Yang, Mingqi Yang, et al. 2025a. Minimax-speech: Intrinsic zero-shot text-to-speech with a learnable speaker encoder. <i>arXiv preprint arXiv:2505.07916</i> .	969
		970
		971
		972
		973
		974
	Weicheng Zhang, Cheng-Chieh Yeh, Will Beckman, Tuomo Raitio, Ramya Rasipuram, Ladan Golipour, and David Winarsky. 2023. Audiobook synthesis with long-form neural text-to-speech. In <i>12th Speech Synthesis Workshop (SSW) 2023</i> .	975
		976
		977
		978
		979
	Xueyao Zhang, Chaoren Wang, Huan Liao, Ziniu Li, Yuancheng Wang, Li Wang, Dongya Jia, Yuanzhe Chen, Xiulin Li, Zhuo Chen, et al. 2025b. Speech-judge: Towards human-level judgment for speech naturalness. <i>arXiv preprint arXiv:2511.07931</i> .	980
		981
		982
		983
		984
	Xingjian Zhao, Zhe Xu, Qinyuan Cheng, Zhaoye Fei, Luozhijie Jin, Yang Wang, Hanfu Chen, Yaozhou Jiang, Qinghui Gao, Ke Chen, et al. 2025. Moss-speech: Towards true speech-to-speech models without text guidance. <i>arXiv preprint arXiv:2510.00499</i> .	985
		986
		987
		988
		989
	Siqi Zheng, Luyao Cheng, Yafeng Chen, Hui Wang, and Qian Chen. 2023. 3d-speaker: A large-scale multi-device, multi-distance, and multi-dialect corpus for speech representation disentanglement. <i>arXiv preprint arXiv:2306.15354</i> .	990
		991
		992
		993
		994
	Jiaming Zhou, Shiyao Wang, Shiwan Zhao, Jiabei He, Haoqin Sun, Hui Wang, Cheng Liu, Aobo Kong, Yujie Guo, Xi Yang, et al. 2025a. Childmandarin: A comprehensive mandarin speech dataset for young children aged 3-5. In <i>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics</i> , pages 12524–12537.	995
		996
		997
		998
		999
		1000
		1001
	Siyi Zhou, Yiquan Zhou, Yi He, Xun Zhou, Jinchao Wang, Wei Deng, and Jingchen Shu. 2025b. Indextts2: A breakthrough in emotionally expressive and duration-controlled auto-regressive zero-shot text-to-speech. <i>arXiv preprint arXiv:2506.21619</i> .	1002
		1003
		1004
		1005
		1006
	Han Zhu, Wei Kang, Liyong Guo, Zengwei Yao, Fangjun Kuang, Weiji Zhuang, Zhaoqing Li, Zhifeng Han, Dong Zhang, Xin Zhang, et al. 2025a.	1007
		1008
		1009

1010
1011 Zipvoice-dialog: Non-autoregressive spoken dia-
1012 logue generation with flow matching. *arXiv preprint*
arXiv:2507.09318.

1013 Han Zhu, Wei Kang, Zengwei Yao, Liyong Guo,
1014 Fangjun Kuang, Zhaoqing Li, Weiji Zhuang, Long
1015 Lin, and Daniel Povey. 2025b. Zipvoice: Fast
1016 and high-quality zero-shot text-to-speech with flow
1017 matching. *arXiv preprint arXiv:2506.13053*.

1018 Appendix Contents

1019 The Appendix is structured as follows:

- 1020 • Section **A**: Details of dataset construction,
1021 including the detailed explanation of scenar-
1022 os as well as the complete process of data
1023 collection and refinement.
- 1024 • Section **B**: Statistics of LFS-Bench.
- 1025 • Section **C**: Details of Evaluation Protocols.
- 1026 • Section **D**: Details of the validation of human
1027 alignment and the user study.
- 1028 • Section **E**: The details of the experiment's
1029 setting.
- 1030 • Section **F**: Ablation studies and experiments
1031 related to multi-speaker dialogue evaluation.
- 1032 • Section **G**: More results and analysis of the
1033 experiments.
- 1034 • Section **H**: Limitations and future works.
- 1035 • Section **I**: Potential social impact of LFS-
1036 Bench.

1037 A Details of LFS-Bench's Construction

1038 A.1 Explanation of Scenarios

1039 LFS-Bench systematically categorizes the chal-
1040 lenges inherent in current long-form speech gen-
1041 eration into three primary dimensions: **Acoustics**,
1042 **Semantics, and Expressiveness**. To facilitate a
1043 more fine-grained and precise assessment, we cu-
1044 rate a dataset of 1,101 audio samples aligned with
1045 these dimensions, encompassing 17 downstream
1046 scenarios such as audiobooks, podcasts, talk shows,
1047 and news broadcasting. In the following section,
1048 we comprehensively detail the audio scenarios and
1049 data selection criteria associated with each chal-
1050 lenge category.

1051 Scenarios for Acoustics Challenges

1052 In the context of long-form TTS and dialogue gen-
1053 eration tasks, the primary user concerns regarding
1054 acoustic performance are categorized as follows:

- 1055 • **Audio Quality:** As a fundamental require-
1056 ment, the generated audio must be devoid of
1057 background noise and electronic artifacts, en-
1058 suring high fidelity and clear auditory percep-
1059 tion for the user.

• **Timbre Consistency:** In single-speaker set-
1060 tings, the speaker's timbre must remain per-
1061 ceptually consistent throughout the sequence,
1062 analogous to identity preservation in video
1063 generation tasks. In multi-speaker dialog sce-
1064 narios, accurate speaker transitions are criti-
1065 cal, requiring precise alignment between the
1066 dialogue script and the corresponding speaker
1067 identities.

• **Acoustic Environment Consistency:** The
1068 ability to maintain a stable sound field is a
1069 core capability in long-form speech gener-
1070 ation. This requires unity across acoustic
1071 dimensions, such as the recording environ-
1072 ment and sound imaging. Furthermore, in
1073 multi-speaker contexts, ensuring that differ-
1074 ent speakers appear to share a unified acoustic
1075 scene is a crucial objective.

Based on the above basic requirements, we select
1076 six audio downstream scenarios to construct test
1077 cases related to the acoustic dimension, which are
1078 specifically introduced as follows.

Customer Service Widely deployed in e-
1079 commerce, AI agents frequently deliver lengthy
1080 responses detailing policies and products. This
1081 scenario demands high-fidelity, artifact-free audio
1082 to maintain professional credibility and ensure a
1083 trustworthy user experience.

Audiobooks As a quintessential long-form sce-
1084 nario, audiobooks demand rigorous acoustic consis-
1085 tency. The synthesis must maintain timbre stability
1086 to mitigate "speaker drift," preserve a stationary
1087 acoustic environment to ensure immersion, and
1088 guarantee high-fidelity quality for prolonged listening
1089 comfort.

Podcasts This scenario focuses on multi-turn
1090 dialogue generation and natural interaction. Char-
1091 acterized by an informal or semi-formal conver-
1092 sational style, this domain places relatively lower
1093 demands on dramatic expressiveness; however, it
1094 imposes strict requirements on turn-taking transi-
1095 tions. Consequently, this scenario necessitates
1096 that TTS models not only execute accurate speaker
1097 switching but also synthesize appropriate and sta-
1098 ble reverberation to reconstruct an authentic and
1099 vivid conversational atmosphere.

Chat, Debate, and Interview While lacking di-
1100 rect commercial applications, these real-world sce-
1101 narios serve as benchmarks for acoustic modeling
1102 limits. The frequent speaker transitions inherent in
1103

1110 these domains pose significant challenges to synthesis systems. Furthermore, the associated complex
1111 acoustic environments introduce additional layers
1112 of difficulty regarding background noise and channel
1113 variability.
1114

1115 Scenarios for Semantics Challenges

1116 In the semantic dimension, long-form speech generation
1117 is categorized into two sub-dimensions: accuracy and naturalness.
1118

- 1119 • **Content Accuracy:** Evaluates the alignment
1120 between the generated speech and the input
1121 text. In long-sequence generation, this metric
1122 primarily assesses the model’s robustness
1123 against omissions, repetitions, and hallucinations,
1124 ensuring high content fidelity.
- 1125 • **Prosodic Coherence:** Evaluates the consistency
1126 between prosodic structure and semantic
1127 logic. Beyond natural pausing, this includes
1128 the appropriate handling of stress and intonation,
1129 ensuring a fluent rhythm at the paragraph level and avoiding mechanical or
1130 disjointed delivery.

1132 To rigorously evaluate model performance regarding
1133 semantic challenges, we construct test cases
1134 across five downstream scenarios, specifically targeting
1135 the two aforementioned dimensions.

1136 **News and Popular Science** In these scenarios,
1137 content correctness is paramount, as users exhibit
1138 minimal tolerance for semantic deviations. Consequently,
1139 we curate instances featuring linguistic complexity,
1140 challenging pronunciations, and domain-specific knowledge to comprehensively assess
1142 model robustness.

1143 **Lesson, Seminar, and Presentation** Beyond
1144 basic accuracy, these scenarios impose higher demands
1145 on naturalness. Speakers are expected to enhance auditory perception through appropriate
1146 stress and rhythmic cadence. Therefore, in addition
1147 to content complexity, we incorporated colloquial
1148 expressions and diverse prosodic structures to further
1149 evaluate the model’s prosodic coherence.
1150

1151 Scenarios for Expressiveness Challenges

1152 Immersion and high expressiveness are the ultimate
1153 goals of audio synthesis. For long-form generation,
1154 given its temporal complexity, we decompose expressiveness
1155 into Richness and Hierarchy.

- 1156 • **Expressive Richness:** Evaluates the overall
1157 expressive quality through the lenses of emo-

1158 tional resonance, character portrayal, and sto-
1159 rytelling. Similar to sentence-level synthesis,
1160 this metric primarily focuses on the **average
1161 magnitude** of expressiveness maintained
1162 throughout the entire audio sequence.

- 1163 • **Expressive Hierarchy:** Represents the funda-
1164 mental distinction between paragraph-level
1165 and sentence-level generation. The extended
1166 context necessitates a focus on dynamic varia-
1167 tions (e.g., shifts in emotion and volume) and
1168 the alignment between the acoustic evolution
1169 and the semantic scenario.

1170 Guided by these evaluation dimensions, we
1171 curate test cases across six highly expressive
1172 downstream scenarios to rigorously probe the upper
1173 boundaries of model capabilities within LFS-
1174 Bench.

1175 **Sportcast and Live Streaming:** These scenarios
1176 predominantly challenge Expressive Richness.
1177 Characterized by sustained high-intensity delivery
1178 and emotional saturation, they demand that the
1179 model maintain a consistently elevated energy level
1180 to match the fast-paced nature of the content.

1181 **Speech, Host, Talkshow, and Drama:** These domains
1182 necessitate a synergy of both Richness and Hierarchy.
1183 Beyond high emotional fidelity, they require sophisticated control over dynamic
1184 evolution, such as tension building in drama or
1185 rhythmic variation in hosting, to ensure the acoustic
1186 delivery aligns seamlessly with the narrative arc.
1187

1188 A.2 Details of Data Collection

1189 In this section, we provide further elaboration on
1190 the data sources and processing pipeline of LFS-
1191 Bench.

1192 Online Text Corpora

1193 For the Audiobook, News, Drama, and Host scenarios,
1194 we harvest long-form texts from diverse online
1195 resources, spanning classic literature, web novels,
1196 and TouTiao⁴. Following data acquisition via OCR
1197 or web crawling, we employ the clean-text⁵ li-
1198 brary to sanitize the raw corpus by removing arti-
1199 facts such as URLs, emojis, and garbled characters.
1200 Subsequently, human annotators conduct rigorous
1201 quality assurance and enrich the dataset with meta-
1202 data labels for scenario, topic, and speaker identity.

⁴https://app.toutiao.com/news_article/

⁵<https://pypi.org/project/clean-text/>

1203 Online Audio Media

1204 We extensively utilize online audio materials across
1205 various scenarios, with data sources including
1206 YouTube⁶, Bilibili⁷, Spotify⁸, RedNote⁹, and Ap-
1207 ple Podcasts¹⁰. First, we crawl audio materials
1208 tailored to our target scenarios from these plat-
1209 forms. Subsequently, we denoise the raw audio
1210 using Zipenhancer (Wang and Tian, 2025) to en-
1211 sure processing accuracy. After obtaining cleaner
1212 data, we filter out samples with low expressiveness
1213 and quality based on a DNS-MOS (Reddy et al.,
1214 2021) threshold of 3.5. We then perform speaker
1215 diarization using 3D-Speaker (Zheng et al., 2023)
1216 and transcribed the resulting audio segments via
1217 SenseVoice-Small¹¹. Finally, human annotators
1218 are employed to proofread the machine-generated
1219 transcripts against the ground truth and update the
1220 metadata labels.

1221 LLM Generation

1222 In scenarios such as chat, presentations, and cus-
1223 tomer service, we leverage GPT-5 (OpenAI, 2025)
1224 to facilitate the generation of high-quality test cases.
1225 Specifically, we design sophisticated prompts to
1226 guide the LLM in producing structured content
1227 that aligns with specific scenarios and topics while
1228 maintaining a certain level of generation complex-
1229 ity. Figure 5 illustrates a set of prompts used for
1230 generating presentation topics for computer sci-
1231 ence students. These structured prompts serve as
1232 customizable templates, allowing users to adapt
1233 them for generating diverse long-form data. After
1234 LLM generation, the generated content is mutually
1235 proofread by annotators.

1236 We recruit three undergraduate students for data
1237 annotation and verification, compensated at a rate
1238 of \$0.20 per instance. To ensure quality, all data
1239 samples are double-checked. The total expenditure
1240 for the data collection process amount to \$220.

1241 A.3 Details of Data Refinement

1242 Semantic De-duplication

1243 To ensure data diversity, we perform topic-level
1244 deduplication on both crawled and generated test
1245 instances. Specifically, we utilized GPT-5 to extract

1246 topics, keywords, and summaries from each long-
1247 text instance. These elements are concatenated
1248 and encoded into embeddings using Sentence-
1249 BERT¹² (Reimers and Gurevych, 2019). We then
1250 filter out semantically redundant samples based on
1251 a cosine similarity threshold of 0.8 and replenish
1252 the dataset via LLM-based generation.

1253 Quality Evaluation

1254 We further employ GPT-5 to assess the quality of
1255 the de-duplicated samples. Specifically, we de-
1256 sign prompts to evaluate textual expressiveness and
1257 content consistency, guiding the LLM to rate the
1258 suitability of each instance for long-form speech
1259 generation on a scale of 1 to 5. Only samples with
1260 recommendation scores exceeding 2 are retained.
1261 The specific prompt used for this quality assess-
1262 ment is in Figure 6.

1263 Privacy and Ethical Filtering

1264 To ensure the safety and anonymity of our dataset,
1265 we employ DeepSeek V3.2 (Liu et al., 2024a) to
1266 conduct a rigorous privacy and ethical assessment.
1267 Specifically, we design a prompt incorporating
1268 Chain-of-Thought (CoT) (Wei et al., 2022) reason-
1269 ing to guide the model through a two-step analysis:

- 1270 **1. Selective PII Anonymization:** The model
1271 is instructed to specifically identify and
1272 anonymize the names of **private individuals** (non-public
1273 figures). While the names of
1274 celebrities or public entities are retained to
1275 preserve contextual integrity, the names of
1276 ordinary citizens are replaced with generic
1277 placeholders or synthetic alternatives.
- 1278 **2. Ethical Risk Assessment:** The model then
1279 scrutinizes the content for social and ethical
1280 risks, including hate speech, violence, sexual
1281 explicitness, and bias.

1282 Based on this analysis, samples containing toxic
1283 content are discarded, while those with minor sen-
1284 sitivity issues are revised. The specific prompt used
1285 for this filtering is presented in Figure 7.

1286 Manual Review

1287 Following the automated filtering pipelines, we
1288 implement a three-stage human-in-the-loop review
1289 process to finalize the dataset. Expert annotators
1290 execute the following operations:

⁶<https://www.youtube.com>
⁷<https://www.bilibili.com>
⁸<https://open.spotify.com/>
⁹<https://www.xiaohongshu.com/>
¹⁰<https://podcasts.apple.com/>
¹¹<https://huggingface.co/FunAudioLLM/SenseVoiceSmall>
¹²<https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2>

Prompt for generating structured presentation data

You are an expert computer science professor and content creator. Your task is to generate a high-quality, long-form presentation script on the topic: **[Insert Topic Here]**.

Generation Requirements: 1. **Complexity:** The content must be academically rigorous, suitable for computer science students. Include technical terminology and logical reasoning. 2. **Structure:** The speech should be coherent but segmented into logical paragraphs. 3. **Format:** You must strictly output a valid JSON object without any Markdown formatting.

JSON Schema:

```
{  
  "content": [  
    {  
      "speaker": "Speaker1",  
      "text": "The first paragraph of the speech..."  
    },  
    {  
      "speaker": "Speaker1",  
      "text": "The second paragraph of the speech..."  
    }  
,  
  "num_speakers": 1,  
  "theme": "[Insert Topic Here]",  
  "source": "LLM Generation",  
  "TLDR": "A one-sentence summary of the presentation."  
}
```

Figure 5: Prompt template used for generating presentation topics for computer science students.

1. **Harmless Placeholder Infilling:** For samples that underwent privacy anonymization, the automated generic tags (e.g., [NAME], [LOC]) are replaced with specific but fictitious entities. This step ensures the text remains natural and grammatically fluid while strictly maintaining the harmlessness and anonymity.
2. **Residual Error Purging:** Annotators then scrutinize the dataset to identify subtle logical inconsistencies, formatting errors, or context mismatches that might have evaded the automated filters. Samples deemed substandard or unnatural are strictly discarded.
3. **Dataset Replenishment:** To compensate for the discarded samples and maintain the volume, new instances are constructed. These replenished samples undergo the same process before being added to the final pool.

Five undergraduate students are enlisted for this manual review, receiving a compensation of \$0.30 per instance. The cumulative expenditure for the data collection process totaled \$330.

A.4 Instructions for Use

The test set will be released on Hugging Face under the **CC BY-NC-SA 4.0** license, allowing for free non-commercial use. For evaluations involving

additional voice profiles on our benchmark, users must strictly adhere to the specific licenses associated with those assets. Furthermore, the complete codebase for data processing and evaluation will be made publicly available on our GitHub repository.

B Statistics of LFS-Bench

B.1 Categorical Statistics

We present a comprehensive statistical analysis of the 1,101 samples in LFS-Bench across five key dimensions: language (Chinese/English), speaker configuration (single/dual/multi-speaker), core challenges (Acoustics, Semantics, Expressiveness), scenarios, and content topics, as illustrated in Figure 8. As observed, LFS-Bench maintains a strictly balanced language ratio, comprising 49.3% Chinese and 50.7% English samples. Regarding speaker configuration, while the dataset primarily focuses on single-speaker long-form speech and dual-speaker dialogue, we explicitly include 101 multi-speaker samples (involving 3 or 4 speakers) to facilitate the evaluation of multi-talker generation capabilities. Furthermore, the dataset exhibits a relatively even distribution across the three core challenges, with the Acoustics challenge accounting for the largest proportion at 34.5%. We also quantify the sample distribution across 17 specific downstream scenarios and generate a word cloud to visualize the topic diversity. This balanced sce-

Prompt for the evaluation of long-form instances

You are an expert linguist and data quality evaluator. Your task is to assess the suitability of the following text sample for **long-form speech generation**.

Please evaluate the text based on the following two criteria:

1. **Textual Expressiveness**: Assess the fluency, naturalness, and rhetorical quality of the text. Is the language vivid and rhythmically suitable for long-duration speech synthesis?

2. **Content Consistency**: Assess the logical coherence and semantic stability of the text. Is the narrative or argument consistent throughout without contradictions or abrupt topic shifts?

Rate each criterion on a scale of 1 to 5 (1 = Poor, 5 = Excellent). Based on these, provide an **Overall Score** (1-5) representing your recommendation for retaining this sample.

Output Requirement:

You must output the result strictly in the following JSON format:

```
{
  "reasoning": "Provide a brief analysis explaining the scores, highlighting pros and cons.",
  "textual_expressiveness_score": <integer between 1 and 5>,
  "content_consistency_score": <integer between 1 and 5>,
  "overall_score": <integer between 1 and 5>
}
```

Text to Evaluate:

[Insert Text Here]

Figure 6: Prompt template for the quality evaluation of test instances.

1345 scenario distribution, combined with a rich variety of
1346 content topics, minimizes potential bias during the
1347 evaluation process.

B.2 Distributional Statistics

1348 We also conduct a detailed analysis of the text
1349 length distribution within LFS-Bench, as illustrated
1350 in Figure 9. Specifically, text length is quantified by
1351 the number of characters for Chinese data and the
1352 number of words for English data, excluding non-
1353 phonetic elements such as punctuation. The results
1354 indicate that text lengths for both languages follow
1355 an approximate normal distribution, primarily con-
1356 centrate within the interval [80, 500], with mean
1357 lengths of 271.8 for Chinese and 174.6 for English.
1358 This distribution effectively supports the rigorous
1359 and realistic evaluation of long-form speech gen-
1360 eration capabilities.

C Details of Evaluation Protocol

C.1 Timbre Consistency

1363 To evaluate timbre consistency, we adopt a segment-
1364 based speaker similarity approach following prior
1365 zero-shot TTS studies (Du et al., 2024; Guo et al.,
1366 2024b).

1367 Specifically, for a **single-speaker** long-form
1368 speech sample w , we apply a sliding window over
1369 the waveform to extract a sequence of speaker em-
1370 beddings $\{\mathbf{e}_i\}_{i=1}^n$ by WavLM TDCNN ¹³, where n

1372 denotes the number of windows. Given that speaker
1373 embeddings are sensitive to segment duration and
1374 verification models are typically optimized for 2–
1375 4s segments, **we employ a window length of 3s**
1376 **with a stride of 2s**. We then compute the pairwise
1377 cosine similarity between all distinct embeddings:

$$\text{sim}_{i,j} = \cos\left(\frac{\mathbf{e}_i}{\|\mathbf{e}_i\|}, \frac{\mathbf{e}_j}{\|\mathbf{e}_j\|}\right), \quad \forall i \neq j. \quad (2)$$

1378 Finally, we utilize the average score of the result-
1379 ing similarity sequence $\{\text{sim}_{i,j}\}$ as the quantitative
1380 metric for timbre consistency.

1381 Evaluating dual and multi-speaker scenarios is
1382 inherently more complex due to the involvement
1383 of speaker transitions. To ensure validity, we first
1384 utilize 3D-Speaker (Zheng et al., 2023) to verify
1385 the number of speakers, confirming that at least
1386 one successful speaker turn occurs. Subsequently,
1387 let K denote the number of distinct speakers in
1388 the generated audio. We employ forced alignment
1389 to obtain sentence-level timestamps and concate-
1390 nate speech segments belonging to each speaker
1391 $k \in \{1, \dots, K\}$, yielding a speaker-specific audio
1392 stream \tilde{w}_k . We utilize a Paraformer-based Align
1393 Model¹⁴ (Gao et al., 2022) for Chinese data and
1394 WhisperX¹⁵ (Bain et al., 2023) for English data.
1395 Both models demonstrate alignment errors of less
1396 than 100ms on minute-level recordings, minimiz-
1397 ing error accumulation. Finally, for each speaker-

¹³https://huggingface.co/docs/transformers/en/model_doc/unispeech-sat

¹⁴https://modelscope.cn/models/iic/speech_timestamp_prediction-v1-16k-offline

¹⁵<https://github.com/m-bain/whisperX>

Prompt for Privacy and Ethical Filtering

Role: You are an expert data safety and privacy compliance assistant. Your task is to review the input text for privacy leaks and ethical risks.

Instructions: Please analyze the input text following these steps (Chain-of-Thought):

- 1. PII Detection (Selective):** Identify all person names.
 - If the name belongs to a **public figure** (celebrity, politician, historical figure), retain it to preserve context.
 - If the name belongs to a **private individual** (ordinary citizen), anonymize it using a placeholder (e.g., [NAME]).
- 2. Ethical Risk Assessment:** Check for hate speech, explicit violence, sexual content, or severe bias.
 - If the risk is severe and cannot be mitigated, mark as invalid.
 - If the risk is minor or related to PII, provide a revised version.

Output Format: Output the result in a strict JSON format with the following keys:

- “**reasoning**”: A brief explanation of your analysis regarding PII and safety risks.
- “**valid**”: Boolean (true/false). Set to **false** only if the content contains unmitigable toxic content. Set to **true** if it is safe or has been successfully anonymized/revised.
- “**revised_text**”: The clean version of the text after anonymizing private names and removing minor risks. If invalid, return an empty string.

Input Text: [INPUT_TEXT]

Figure 7: The prompt template used for privacy and ethical filtering. It guides the LLM to selectively anonymize private individuals’ names while retaining public figures, and outputs the decision in a structured JSON format.

specific stream \tilde{w}_k , we compute its similarity average a_k following the single-speaker protocol defined above. The final metric is calculated as the average across all speakers:

$$\text{Score}_{\text{multi}} = \frac{1}{K} \sum_{k=1}^K a_k. \quad (3)$$

C.2 Reverb Consistency

We employ the Speech-to-Reverberation Modulation Energy Ratio (SRMR) to quantify reverberation intensity, analyzing its temporal fluctuations to evaluate the model’s ability to maintain a consistent acoustic environment.

Specifically, for a generated utterance w , we apply a sliding window to compute the SRMR for each segment using the SRMRpy toolkit¹⁶. To balance estimation reliability with the temporal resolution required to detect “reverberation drift”, we adopt a window size of 3s and a stride of 2s, consistent with our timbre consistency evaluation.

Furthermore, to mitigate the impact of non-speech segments (e.g., silence or noise) on the statistical analysis, we pre-filter each window using a

Voice Activity Detection (VAD) model¹⁷. Any window containing more than 60% non-speech frames is discarded. This process yields a sequence of valid reverberation scores $\{r_i\}_{i=1}^n$, where n denotes the number of effective windows.

Finally, we compute the standard deviation of this sequence as our Reverb Consistency metric; a lower value indicates a more stable reverberation pattern throughout the utterance.

It is important to note that this metric is predicated on the assumption that the **acoustic environment within a single long-form segment should remain stable**. We acknowledge that specific scenarios, such as *Outdoor Live Streaming*, may inherently require dynamic acoustic shifts for semantic correctness. However, for the majority of standard long-form synthesis tasks, acoustic stability serves as a critical indicator of generation robustness; therefore, we treat high variance as a penalty in this evaluation framework.

¹⁷https://modelscope.cn/models/iic/speech_fsmn_vad_zh-cn-16k-common-pytorch, <https://github.com/snakers4/silero-vad>

¹⁶<https://github.com/jfsantos/SRMRpy>

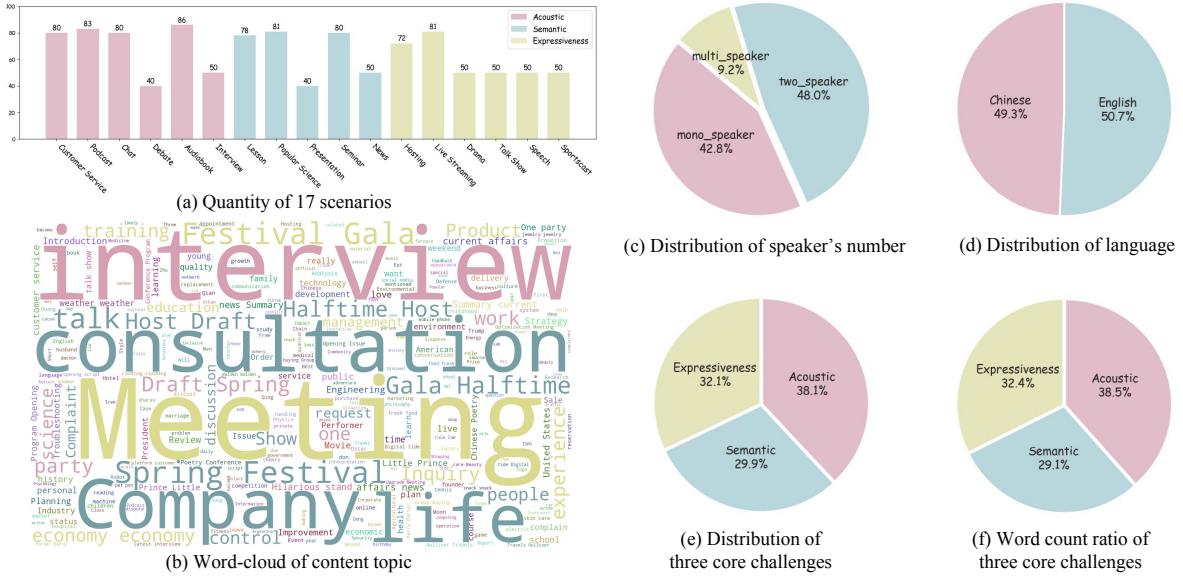


Figure 8: The categorical statistics of LFS-Bench across five key dimensions: language, speaker numbers, core challenges, content topics and scenarios.

C.3 Sound Fidelity

To achieve a non-intrusive, reference-free assessment of audio fidelity, we directly utilize the SQUIM-PESQ metric via the official Torchaudio interface¹⁸. This metric yields scores ranging from -0.5 to 4.5, with values typically exceeding 1.0 for speech audio.

C.4 Content Accuracy

To quantify content accuracy, we employ Character Error Rate (CER) for Chinese and Word Error Rate (WER) for English. The evaluation pipeline proceeds as follows: First, we obtain the transcribed text T_{pred} from the generated audio using FunASR-Nano¹⁹. Subsequently, we perform rigorous normalization on both the ground truth T_{gt} and the prediction T_{pred} . This process includes: 1) **Punctuation Removal**: eliminating punctuation via `string.punctuation` and `zhon.hanzi.punctuation`²⁰; 2) **Whitespace Standardization**: trimming leading/trailing spaces and collapsing multiple spaces; and 3) **Character Normalization**: converting Traditional Chinese to Simplified using `zhconv`²¹ while filtering non-ASCII characters in English text via `clean-text`²². Finally, following the methodol-

ogy of F5-TTS (Chen et al., 2024c), we calculate the WER and CER using the JiWER library²³.

It is worth noting that our selected transcription system, FunASR-Nano, demonstrates exceptional performance on clean speech benchmarks, achieving a WER of 1.76% on Librispeech-clean (EN) and a CER of 2.56% on Fleurs-zh. These results are competitive with state-of-the-art models of similar parameter scale (Srivastav et al., 2025). Utilizing such a high-performance ASR model minimizes transcription-induced errors, ensuring that the reported metrics accurately reflect the content fidelity of the generated audio.

C.5 Prosodic Coherence

For prosody evaluation, we utilize Speech-Judge (Zhang et al., 2025b), a fine-tuned Qwen2.5-Omni model specialized for audio assessment. To specifically target long-form modeling capabilities, we refine the original prompt design, decomposing the evaluation criteria into three granular dimensions: *Prosodic Coherence & Flow*, *Rhythmic Hierarchy & Layering*, and *Overall Naturalness*. Ratings are assigned on a scale from 1.0 to 5.0, as detailed in Figure 12. Furthermore, to mitigate the inherent variance of LALMs, we conduct 10 independent evaluations for each generated audio sample and calculate the mean to derive the final prosody score.

¹⁸https://docs.pytorch.org/audio/main/tutorials/squim_tutorial.html

¹⁹<https://github.com/FunAudioLLM/Fun-ASR>

²⁰<https://pypi.org/project/zhon/>

²¹<https://pypi.org/project/zhconv/>

²²<https://pypi.org/project/clean-text/>

²³<https://pypi.org/project/jiwer/>

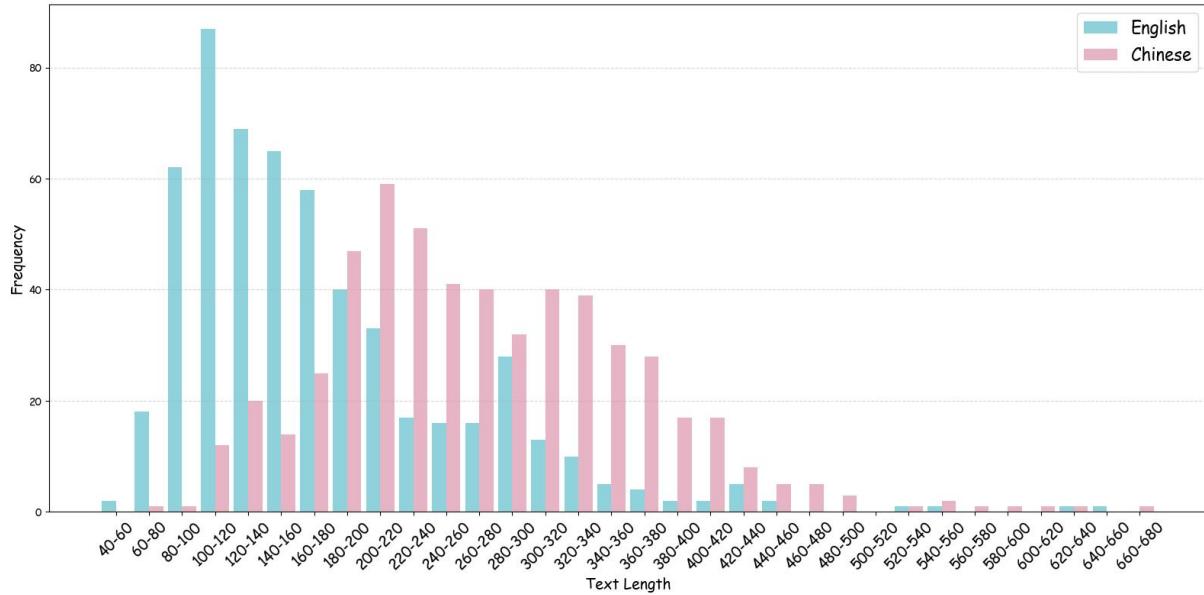


Figure 9: The statistics of the text length distribution within LFS-Bench. The red dashed line indicates the average text length of English, and the green dashed line indicates the average text length of Chinese.

C.6 Expressive Richness

This dimension assesses the global expressive quality of the generated speech, representing the average level of expressiveness. Formally, we segment the audio waveform into a sequence of non-overlapping 10-second chunks $\{c_i\}_{i=1}^M$. An LALM is then employed to assign an expressiveness score s_i to each chunk c_i . The final Expressive Richness metric is defined as the arithmetic mean of these segment scores:

$$\text{Score}_{\text{rich}} = \frac{1}{M} \sum_{i=1}^M s_i. \quad (4)$$

The 10-second segmentation window is selected to align with the typical generation duration of chunk-based long-form synthesis pipelines. This strategy effectively mitigates the confounding effects of inter-chunk inconsistencies, allowing for a more focused evaluation of intrinsic expressiveness. The prompt template used for this assessment is illustrated in Figure 14.

C.7 Expressive Hierarchy

Complementing the local expressiveness defined above, paragraph-level expressive hierarchy is equally critical in long-form settings. Unlike the segment-based approach for **Expressive Richness**, we leverage the long-context understanding capabilities of modern LALMs to conduct a holistic assessment. Specifically, the entire audio sequence

is fed into the model, which is instructed to evaluate the speech based on three dimensions: **Emotional Variation**, **Vocal Dynamics**, and **Scene Appropriateness**.

The prompt template used for this assessment is illustrated in Figure 13.

D User Study

For the subjective evaluation, we recruit a balanced cohort of 10 expert listeners (5 male, 5 female) with diverse professional backgrounds, including audio engineers from the internet industry, live streaming specialists, and academic researchers (professors and PhD candidates) in signal processing. All participants possess extensive experience in audio quality assessment. In all subjective tests, we conduct Mean Opinion Score (MOS) evaluation. They are compensated at a rate of \$1.00 per evaluation instance (either a single sample or a paired comparison), with the total expenditure for the user study amounting to \$2,000.

D.1 Validation of Timbre Consistency

In this experiment, we randomly select 50 samples from the test set for subjective evaluation. Listeners are instructed to rate the “Timbre Maintenance” capability using a Mean Opinion Score (MOS). They are explicitly required to focus exclusively on timbre stability, disregarding other acoustic factors (e.g., sound field, audio quality) and semantic dimensions (e.g., pronunciation, prosody). If the

1493
1494
1495
1496
1497
1498
1499
1500
1501
1502

1503

1504
1505
1506
1507
1508
1509
1510
1511

1512

1513
1514
1515
1516
1517
1518
1519

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548

expressiveness of the audio does not affect the timbre, it can also be ignored.

We concurrently compute the objective Timbre Consistency score for each sample. The correlation analysis between the subjective MOS and our objective metric yields the following results: SRCC=0.75, PLCC=0.77, and KRCC=0.59. These results demonstrate that our proposed timbre consistency evaluation aligns closely with human perception.

Furthermore, the user study reveals several statistical thresholds regarding our objective metric:

1. **Score < 0.85:** Indicates significant timbre drift. In multi-speaker scenarios, this may also suggest inaccurate speaker transitions.
2. **Score < 0.93:** Demonstrates superior timbre maintenance, with performance comparable to ground truth recordings.
3. **Score ∈ [0.85, 0.90]:** Represents generally acceptable performance, typically characterized by minor local timbre mutations or artifacts.

Besides, the robustness of this metric presents room for improvement. Potential misclassifications may arise in specific edge cases, such as audio exhibiting periodic timbre variations (e.g., looping patterns). Since our metric relies on global averages, it may fail to penalize such rhythmic fluctuations, yielding a favorable score despite perceptual inconsistency. Future work will aim to incorporate temporal modeling to address these dynamic artifacts.

D.2 Validation of Sound Fidelity

Considering that SQUIM-PESQ is trained on English sentence-level data, we select 50 samples from the test set to verify its generalization to Chinese and long-form scenarios. Listeners are instructed to rate “Clarity and Fidelity” using MOS. Specifically, they are required to focus exclusively on factors such as background noise, artifacts, and articulation, while disregarding prosody and expressiveness. We concurrently compute the SQUIM-PESQ scores for these samples. The correlation analysis between subjective MOS and SQUIM-PESQ yield an SRCC of 0.72, a PLCC of 0.47, and a KRCC of 0.53. These results demonstrate that the metric aligns closely with human perception.

Table 4: Human alignment comparison across different LALMs on Expressive Richness.

Models	PLCC	SRCC	QWK	MAE
UTMOS	-0.0203	-0.0433	-0.0313	1.043
UTMOSv2	-0.0745	-0.0789	-0.0827	0.9012
SQUIM-MOS	-0.3145	-0.2767	-0.0825	1.3177
DNS-MOS	-0.0243	-0.0189	-0.0034	0.8537
GPT-4o	0.1549	0.2002	0.1435	0.7982
Qwen3Omni-Flash	0.1464	0.1696	0.0812	1.0401
Qwen3Omni-Instruct	0.2245	0.2488	0.1172	1.0809
Gemini2.5-flash	0.4166	0.4079	0.2623	0.8123
Gemini2.5-pro	0.5085	0.5160	0.4242	0.7635
Gemini3-flash	0.5224	0.5266	0.5066	0.6562
Gemini3-Pro	0.7061	0.7080	0.6772	0.5879

D.3 Validation of Prosodic Coherence

To validate the Prosodic Coherence metric, we adopt the methodology of SpeechJudge (Zhang et al., 2025b), conducting a human preference test to assess the model’s evaluation performance. In addition to the robust correlation reported in Section 3.5, our analysis yields the following statistical insights:

1. **Score Divergence > 1:** A difference of more than 1 points indicates a substantial and perceptually obvious gap in prosodic quality between audio samples.
2. **Score ≥ 4:** Audio samples achieving this threshold demonstrate competent basic prosody and rhythmic structure.
3. **Score ≥ 4.5:** Performance at this level is considered virtually indistinguishable from ground truth recordings.

D.4 Validation of Expressiveness

In this experiment, we curate a diverse set of 200 samples spanning all models and tasks for subjective evaluation. Listeners are tasked with rating the audio strictly adhering to the same prompt criteria provided to the LALMs.

Concurrently, we benchmark this 200-sample test set against 4 specialized MOS prediction models (UTMOS (Saeki et al., 2022), UTMOSv2 (Baba et al., 2024), SQUIM-MOS (Kumar et al., 2023), DNS-MOS (Reddy et al., 2021)) and 8 flagship LALMs (GPT-4o, Qwen3Omni-Instruct-30B-A3B (Xu et al., 2025b), Qwen3Omni-Flash, StepFun-Audio-R1 (Tian et al., 2025), Gemini-2.5-flash, Gemini-2.5-pro, Gemini-3-flash, Gemini-3-pro). Notably, due to context length constraints, only a subset of these LALMs is employed for the Expressive Hierarchy evaluation.

Table 5: Human alignment comparison across different LALMs on Expressive Hierarchy.

Models	PLCC	SRCC	QWK	MAE
GPT-4o	0.1328	0.1171	0.0803	0.7604
Qwen3Omni-Flash	0.3263	0.2496	0.2193	0.8426
Qwen3Omni-Instruct	0.1641	0.1181	0.0869	0.9130
Gemini2.5-flash	0.0421	0.0005	0.0256	0.8673
Gemini2.5-pro	0.3732	0.3744	0.2871	0.800
Gemini3-flash	0.406	0.3924	0.2032	1.1837
Gemini3-Pro	0.6041	0.6234	0.5452	0.7204

We examine the correlation between the mean listener ratings and the model-predicted scores, with results summarized in Table 4 and Table 5. Notably, **Gemini3-Pro** demonstrates superior performance, significantly outperforming other models across both metrics. It is also worth noting that all traditional MOS prediction networks exhibited poor correlation with human perception regarding expressiveness. This suggests that standard MOS training datasets likely lack a specific focus on expressive qualities.

Moreover, we conduct independent repeated trials on this test set to validate the stability of our selected evaluator, Gemini 3 Pro. Specifically, we perform five independent scoring iterations for each audio sample, where Gemini 3 Pro yields inconsistent scores for only 11 instances, demonstrating a level of robustness comparable to human evaluators. Consequently, we adopt a **single-pass evaluation strategy** for this metric.

Furthermore, to ensure consistency in the rating scales adopted by our recruited listeners, we computed the correlation between each individual rater and the mean score of the remaining raters. As shown in Table 6, the high inter-rater correlation confirms the reliability and validity of our evaluation protocol.

E Implementation Detail

E.1 Computational Resources and Environments

All inference and evaluation experiments for open-source models are conducted on a server equipped with 8 NVIDIA GeForce RTX 4090 GPUs and an Intel Xeon Gold 6530 CPU, running Ubuntu 22.04. For model inference, we strictly adhere to the environment specifications provided in the respective official repositories. The core dependencies for our evaluation pipeline include Python 3.10, PyTorch 2.8.0, Torchaudio 2.8.0, and Transformers 4.57.3.

E.2 Selected Voice

For open-source models, we curate a set of 25 reference audio prompts from diverse datasets, including Emilia (He et al., 2024), AISHELL-3 (Shi et al., 2020), NCSSD (Liu et al., 2024b), LibriSpeech (Panayotov et al., 2015), MSPPodcast (Martinez-Lucas et al., 2020), and ChildMandarin (Zhou et al., 2025a), as well as reference voices provided in specific model repositories (see Table 7). We conduct extensive evaluations across these prompts and reported the results of the best-performing voice for each model. This strategy aims to minimize the impact of biases arising from training data discrepancies and inherent voice preferences.

For closed-source models, we selected official voices characterized by high fidelity, superior prosody, and rich expressiveness. Detailed specifications are provided in Table 8.

E.3 Synthesis Strategy

For open-source models, we strictly adhere to the default configurations provided in their official repositories. Specific adjustments for MegaTTS3, CosyVoice3, and IndexTTS2 are detailed below:

MegaTTS3 As the official VAE Encoder (Kingma et al., 2013) is not publicly available, we obtain the VAE latents for our reference prompt speech by contacting the model maintainers.

IndexTTS2 To ensure a fair and objective comparison, we disabled the text sentiment analysis module by setting `use_emo_text` to `false`.

CosyVoice3 We utilized the system text prompt “You are a helpful assistant” during generation, consistent with the official implementation.

For closed-source models, we similarly followed the default synthesis strategies without manually adjusting attributes such as emotion, pitch, or speaking rate.

All open-source models are evaluated in a zero-shot setting for long-form and dialogue generation, whereas closed-source models generated speech using designated voice profiles. Finally, all generated audio is resampled to 24kHz for consistent evaluation.

F Supplementary Experiment

F.1 Inference Speed

The capability to efficiently generate long-form speech is a pivotal performance criterion, garner-

Table 6: Correlation analysis among different evaluators (A denotes Annotator).

	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
PLCC(↑)	0.8696	0.8426	0.9014	0.9035	0.9163	0.8766	0.9022	0.7080	0.8830	0.7623
SRCC(↑)	0.8711	0.8296	0.9028	0.9025	0.9143	0.8635	0.8945	0.7010	0.8820	0.7585
KRCC(↑)	0.7255	0.6804	0.7726	0.7678	0.7872	0.7238	0.7575	0.5399	0.7405	0.6011
QWK(↑)	0.8732	0.8330	0.9030	0.8984	0.9079	0.8544	0.8938	0.7002	0.8740	0.7596
MAE(↓)	0.3713	0.4398	0.3336	0.3452	0.3336	0.3994	0.3541	0.5800	0.3892	0.5402

Table 7: Sources and related information of the voice used in LFS-Bench for open-source models’ inference.

No.	Gender	Age Group	Language	Data Source
1	Female	Children	English	Emilia
2	Male		English	Emilia
3	Female		Chinese	ChildMandarin
4	Male		Chinese	ChildMandarin
5	Female	Teenager	English	NCSSD_R_EN
6	Male		English	NCSSD_R_EN
7	Female		Chinese	AISHELL-3
8	Male		Chinese	NCSSD_R_ZH
9	Female	Youth-Adult	English	msppodcast
10	Male		English	NCSSD_R_EN
11	Female		Chinese	AISHELL-3
12	Male		Chinese	NCSSD_R_ZH
13	Male		Chinese	VibeVoice Github
14	Female		Chinese	VibeVoice Github
15	Male		English	VibeVoice Github
16	Female		English	VibeVoice Github
17	Female	Middle-Aged	English	LibriSpeech
18	Male		English	Emilia
19	Female		Chinese	NCSSD_C_ZH
20	Male		Chinese	NCSSD_C_ZH
21	Male		Chinese	SparkTTS Github
22	Female	Elderly	English	msppodcast
23	Male		English	msppodcast
24	Female		Chinese	NCSSD_C_ZH
25	Male		Chinese	NCSSD_C_ZH

ing widespread attention across both academia and industry. To assess this, we evaluate the computational efficiency of various open-source models using the Real Time Factor (RTF) metric. The RTF is defined as:

$$\text{RTF} = \frac{T_{\text{inference}}}{T_{\text{audio}}}, \quad (5)$$

where $T_{\text{inference}}$ denotes the time required for generation and T_{audio} represents the duration of the generated audio. The computational efficiency results for each model are summarized in Table 9 and Table 10. We observe that non-autoregressive models exhibit a significant advantage in generation speed compared to their autoregressive counterparts. This finding is consistent with the inherent

parallel decoding mechanism of non-autoregressive architectures.

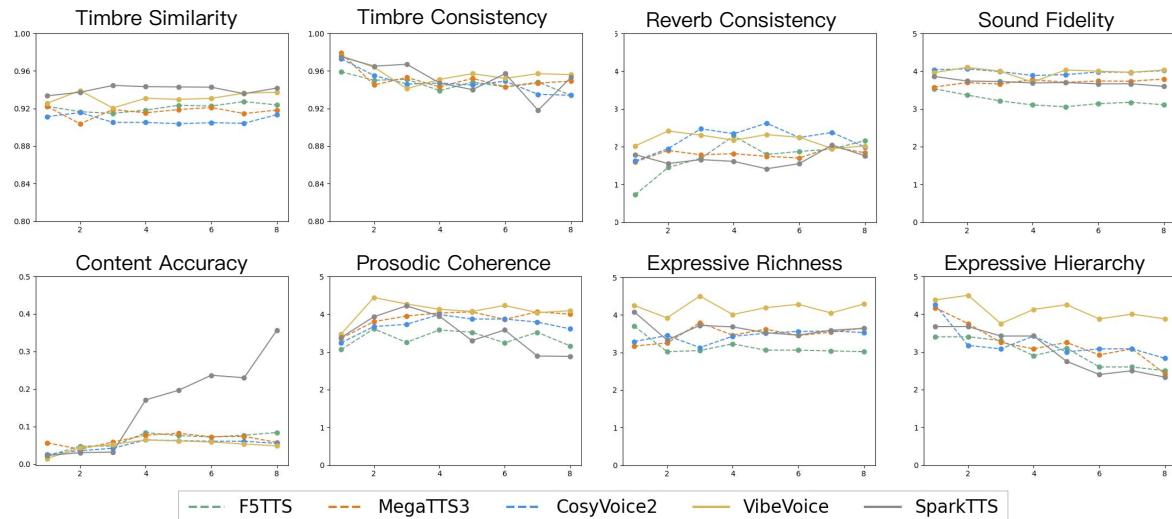
1733
1734

F.2 Ablation on Window Size

The computation of both Timbre Consistency and Reverb Consistency may be sensitive to the sliding window configuration. To validate the rationality of our selected window size and stride, we conduct an ablation study across these two dimensions. The experimental results are in Table 11 and Table 12.

1736
1737
1738
1739
1740
1741

In the ablation study for **timbre consistency**, we observe that a window size of ≤ 2 s results in real data exhibiting lower consistency than CosyVoice3, suggesting a misalignment with human perception. Conversely, window sizes of ≥ 4 s gradually reduce the discrepancy between real and synthetic data, indicating that larger windows tend to average out transient timbre mutations. Regarding the stride, comparative experiments reveal no significant impact on the results. Consequently, to enhance evaluation efficiency and reduce computational overhead, we opt for a larger stride. Based on these findings, we select a window size of 3s and a stride of 2s.


1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755

In the ablation study for **reverb consistency**, a window size of 1s provides sufficient differentiation but proved unstable. Specifically, VibeVoice exhibit an excessively high standard deviation relative to its mean reverb score of 9.25, indicating hypersensitivity at this scale. Conversely, window sizes of ≥ 4 s reduce the inter-model differences, implying that overly large windows overlook small-scale acoustic field mutations. Balancing computational efficiency and resource overhead, we similarly select a window size of 3s and a stride of 2s. Notably, our evaluation method demonstrates overall stability, as the relative rankings of the models remain consistent.

1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769

Table 8: the information of the voices selected in the evaluation for closed-source models.

Provider	Language	Single Speaker	Two Speakers	Multi Speakers
OpenAI	General	Alloy	Onyx, Nova	Round-robin: ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
Gemini	General	Puck	Puck, Aoede	Round-robin: ["Puck", "Aoede", "Charon", "Kore", "Fenrir"]
ElevenLabs	General	Rachel	Charlie, Rachel	Charlie, Rachel, George, Bella, Antoni
Minimax	English Chinese	male-qn-qingse Chinese (Mandarin)_Male_Announcer	— —	— —
Seed-TTS	English Chinese	BV503_streaming BV005_streaming	— —	— —
Seed-TTS-Podcast	General	—	zh_male_dayixiansheng_v2_saturn_bigtt, zh_female_mizaitongxue_v2_saturn_bigtt	—
Inworld	English Chinese	Deborah, Alex Jing, Yichen	— —	— —

Figure 10: **Results on Sequence Length.** The horizontal axis represents the number of sentences in the text. Solid lines denote models using the End-to-End strategy, while dashed lines represent the chunked synthesis.

F.3 Ablation on Generated Length

To further verify the impact of long-sequence modeling on acoustic, semantic, and expressive performance, we extend the analysis presented in Figure 4. Beyond the original six dimensions, we additionally track the evolution of Timbre Consistency and Timbre Similarity with respect to increasing generation length, as shown in Figure 10.

Regarding the Timbre Similarity metric, we adopt the methodology from prior works (Huynh-Nguyen et al., 2025). Specifically, the generated audio w is segmented into a sequence $\{w_i\}_{i=1}^n$ using a window size of 3s and a stride of 2s. We then utilize WavLM TDCNN²⁴ to extract and normalize speaker embeddings for each segment w_i and the reference audio w_{ref} , yielding the embedding sequence $\{e_i\}_{i=1}^n$ and the reference embedding e_{ref} . Finally, we calculate the average cosine similarity

²⁴https://huggingface.co/docs/transformers/en/model_doc/unispeech-sat

between the generated segment embeddings and the reference embedding to serve as the quantitative indicator of Timbre Similarity.

Overall, we observe a general performance decay across nearly all metrics as the generation duration increases. Specifically, Reverb Consistency, Prosodic Coherence, and Expressive Hierarchy exhibits the most significant degradation. These findings suggest that current models struggle to maintain acoustic field stability and effectively capture long-term dependencies in long-form settings. Conversely, Timbre Similarity and Timbre Consistency remained relatively stable compared to other acoustic dimensions. This stability highlights the effectiveness of “in-context learning” paradigms (Du et al., 2024; Jiang et al., 2025) in preserving speaker identity. Additionally, with the exception of Spark-TTS, most models demonstrate robust Content Accuracy. This can be attributed to the strong text understanding and alignment capabilities inherent

1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807

Table 9: The Real Time Factor of mono-speaker long form speech generation models.

Models	RTF
<i>Autoregressive Models</i>	
CosyVoice-2 (0.5B)	1.061 ± 0.031
CosyVoice-3 (0.5B)	0.747 ± 0.048
FishSpeech (0.5B)	1.351 ± 0.131
GLM-TTS (1.5B)	2.400 ± 0.158
IndexTTS-2 (0.1B)	1.065 ± 0.037
SparkTTS (0.5B)	2.046 ± 0.212
VibeVoice (1.5B)	3.801 ± 0.317
<i>Non-Autoregressive Models</i>	
F5TTS (0.3B)	0.198 ± 0.006
MegaTTS3 (0.45B)	0.172 ± 0.002
ZipVoice (0.12B)	0.338 ± 0.013

Table 10: The Real Time Factor of two-speaker dialogue generation models. MOSS-TTSD supports batch inference, thus we directly report the RTF of batch process (batchsize = 32)

Models	RTF
FireRedTTS2	4.717 ± 0.963
MoonCast (2.6B)	5.219 ± 0.048
MOSS-TTSD (1.7B)	0.219 ± 0.019
SoulX-PodCast (1.7B)	2.143 ± 0.169
VibeVoice (1.5B)	4.092 ± 0.305
ZipVoice-Dialog (0.12B)	0.305 ± 0.030

in modern TTS architectures.

F.4 Multi-Speaker Dialogue Generation

To facilitate future research in multi-speaker long-form speech synthesis, LFS-Bench incorporates 101 test cases specifically designed for 3- and 4-speaker dialog scenarios. Using this subset, we evaluate three closed-source models capable of multi-speaker generation: ElevenLabs Multilingual V2, Gemini-2.5-pro-preview-tts, and OpenAI-tts-1-hd. The experimental results are shown in Table 13.

G More Analysis Based on LFS-Bench

G.1 Detailed analysis on each metric

Timbre Consistency Although experimental results indicate that real data generally outperforms synthetic data in timbre consistency (single speaker: 0.96 vs. 0.93; two-speaker: 0.95 vs. 0.92), this gap is not significant. This suggests that the consis-

Table 11: The Ablation study of window setting for timbre consistency. We select the representative models, CosyVoice3 and OpenAI-tts-1-hd, to conduct this ablation in single-speaker settings.

Window Setting	CosyVoice3	OpenAI	Real-Speech
Size (s)	Stride (s)		
1	0.5	0.868	0.824
2	1	0.911	0.887
3	1	0.930	0.916
3	2	0.929	0.915
4	2	0.941	0.931
5	2	0.942	0.949
10	4	0.968	0.971

Table 12: The Ablation study of window setting for reverb consistency. We select the representative models, VibeVoice and Gemini-2.5-pro-preview-tts, to conduct this ablation in two-speaker settings.

Window Setting	VibeVoice	Gemini	Real-Dialog
Size (s)	Stride (s)		
1	0.5	6.40	4.99
2	1	4.27	3.62
3	1	3.58	3.17
3	2	3.59	3.17
4	2	3.20	2.85
5	2	2.95	2.61
10	4	2.23	1.88

tency performance of current models is acceptable. However, we offer two deeper insights. First, open-source models exhibit a relatively larger standard deviation compared to closed-source models, indicating that their stability still lags behind commercial solutions. Second, dialogue models demonstrate greater variance in timbre consistency than single-speaker long-form speech. Given that we have minimized error accumulation from forced alignment, this increased variance likely reflects that models are still hindered by speaker transitions.

Reverb Consistency In this dimension, single-speaker performance is comparable to human recordings. Apart from the CosyVoice series and ElevenLabs models, which underperform on this metric, other models maintain robust reverb consistency, demonstrating strong acoustic field preservation over extended durations. Conversely, in dialogue scenarios, all open-source models and the majority of closed-source models show a significant performance gap compared to real data (Open average: 3.45; Closed average: 3.36). Feedback from

1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824

1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847

Table 13: **Results of multi-speaker dialogue generation models across LFS-Bench’s metrics.** The best results are in **bold** and the second best are underlined.

Model	Acoustics			Semantics		Expressiveness	
	Timbre(\uparrow)	Reverb(\downarrow)	Sound Fidelity(\uparrow)	CER/WER(\downarrow)	Prosody(\uparrow)	Richness(\uparrow)	Hierarchy(\uparrow)
Elevenlabs Multilingual V2	0.93\pm0.030	4.72 \pm 0.69	3.19\pm0.37	0.183 / 0.12	3.28 \pm 0.87	<u>3.23\pm0.54</u>	3.52 \pm 0.82
Gemini-2.5-pro-preview-tts	0.92 \pm 0.012	<u>3.28\pm0.75</u>	<u>3.04\pm0.17</u>	0.077 / 0.102	3.92\pm0.36	3.86\pm0.46	4.05\pm0.62
OpenAI-tts-1-hd	0.92 \pm 0.011	1.91\pm0.38	2.29 \pm 0.17	0.106 / 0.104	3.78 \pm 0.63	2.93 \pm 0.60	3.77 \pm 0.84
Average	0.92	3.30	2.84	0.122 / 0.109	3.66	3.34	3.78

our user study further reveals inconsistencies in sound fields and volume between speakers in generated dialogues. This indicates a need to enhance the models’ ability to disentangle prompt speech attributes. Consequently, future work should prioritize maintaining acoustic unity during speaker transitions.

Sound Fidelity Regarding this metric, the performance of generated speech aligns closely with that of real data. Notably, models such as FishSpeech and ElevenLabs achieve scores significantly surpassing the mean of real data. This suggests that contemporary models have largely resolved sound quality constraints. The fact that generated speech outperforms human recordings likely stems from the composition of the real data. Since the majority of real data is web-crawled rather than studio-recorded, it is susceptible to device and environmental noise, which compromises its fidelity.

Content Accuracy Prior studies indicate that metrics such as WER have reached saturation in sentence-level speech generation (Chen et al., 2024b). This finding extends to chunk-based in-context learning approaches, where models like CosyVoice2 and MegaTTS3 demonstrate exceptional performance. However, the metric remains relevant for autoregressive end-to-end architectures. For instance, SparkTTS exhibits suboptimal Content Accuracy in long-form generation. As in Figure 10, deeper ablation studies confirm that the character accuracy of such models declines as the text length increases.

Prosodic Coherence Regarding prosodic coherence, we observe a distinct gap between real and synthetic speech, suggesting that current models require further improvement in prosody modeling. Notably, closed-source models significantly outperform their open-source counterparts in this dimension. This indicates that while open-source models achieve parity with state-of-the-art systems in fidelity and content accuracy, they still lag in

perceptual metrics such as prosodic naturalness.

Expressive Richness Experimental results identify expressiveness as the primary differentiator between real and synthetic audio. Specifically, open-source models trail real data by approximately 1.5 points in Expressive Richness. While closed-source models demonstrate marked improvement, they still exhibit a gap of nearly 1.0 point. Furthermore, our scenario-based analysis confirms that models underperform in high-expressiveness settings. These findings consistently underscore that generating realistic, highly expressive speech remains a pivotal challenge for achieving immersive audio generation.

Expressive Hierarchy Similar to Expressive Richness, real data outperforms synthetic speech in this metric, with closed-source models surpassing their open-source counterparts. Notably, in single-speaker tasks, models consistently achieve lower scores on Expressive Hierarchy compared to Expressive Richness. This indicates that capturing and modeling paragraph-level hierarchical structure remains a significant challenge. Furthermore, dialog models generally exhibit superior hierarchical performance compared to single-speaker models. We attribute this to the inherent semantic logic of dialog interactions, which likely provides stronger contextual cues that facilitate the learning of hierarchical patterns.

G.2 Analysis based on the scenarios

We extend our analysis by providing scenario-based performance results, visualizing the metrics of closed-source models via a radar chart in Figure 11. These detailed findings corroborate our primary conclusion: most metrics exhibit varying degrees of degradation in high-expressiveness scenarios. A granular visualization reveals that challenging scenarios such as sportscast, host, and talk-show suffer the most severe performance decline. This further indicates that current models

lack the capacity to effectively model highly dynamic prosody and intense emotional variations.

We provide a detailed explanation of the normalization procedures applied to the radar charts in Figure 11. For LALM-based metrics (Expressive Richness, Expressive Hierarchy, Prosodic Coherence), we directly utilize the original values as its definition is consistent with that of MOS scores. For Fidelity, quantified by SQUIM-PESQ (range $[-0.5, 4.5]$), we apply a linear shift of $+0.5$ for alignment. Regarding Timbre Consistency, Reverb Consistency, and Content Accuracy, we first identify the global maximum s_{\max} and minimum s_{\min} across all models in all scenarios. Then, we employ a mapping function f that projects the range $[s_{\min}, s_{\max}]$ onto the interval $[1, 5]$. This transformation ensures that for all dimensions in the radar chart, a larger value consistently represents superior performance. The radar charts in Figure 3 and Figure 1 follow this identical normalization protocol.

G.3 Analysis based on the Languages

We also present the experimental results for the evaluated models across the two covered languages, Chinese and English, as shown in Table 14 and Table 15.

We observe that although all evaluated models claim bilingual capabilities, the target language significantly impacts performance for the majority. For instance, despite utilizing identical voice profiles, ElevenLabs Multilingual V2 exhibits a marked disparity in Expressive Richness between Chinese and English (1.79 vs. 2.87). A similar divergence is evident in Seed-TTS-Podcast (Chinese: 4.19 vs. English: 3.49). In contrast, Gemini-2.5-pro-preview-tts stands out by not only delivering exceptional performance in prosody and expressiveness but also maintaining a consistent balance across both languages.

H Future Works

While LFS-Bench provides a comprehensive evaluation framework for long-form speech generation, several challenges warrant further exploration:

Dependency on Closed-source Models: The evaluation of Expressiveness in LFS-Bench currently relies on closed-source models such as Gemini 3 Pro. The absence of open-source alternatives poses a risk to reproducibility due to potential updates in closed-source APIs. Future work will

focus on distilling high-performance open-source evaluators using data derived from both human assessments and closed-source model outputs.

Limited Language Coverage: Our current dataset focuses exclusively on English and Chinese, omitting other languages, particularly low-resource ones. Future efforts should aim to expand the linguistic breadth of long-form speech generation evaluation.

Timbre Sensitivity: To ensure diversity, LFS-Bench utilizes over 20 reference voices spanning various genders and ages. However, as noted in prior work (Manku et al., 2025), model performance in expressiveness and prosody is highly sensitive to the reference voice. Our current selection may not be sufficiently diverse. Future research should investigate the impact of input voice characteristics on long-form synthesis more deeply.

Instruction Following Capabilities: LFS-Bench primarily evaluates models in zero-shot settings. However, recent advancements have introduced models capable of Instruct-based speech generation (Huang et al., 2025; Wang et al., 2025; Zhou et al., 2025b; Xu et al., 2025b). Developing long-form InstructTTS systems and evaluating their instruction-following capabilities in long-context settings represent significant avenues for future research.

I Social Impacts

This work aims to advance immersive and robust long-form speech generation, facilitating superior downstream applications. However, enhanced generative capabilities inevitably heighten the risk of misuse, potentially violating ethical norms and legal regulations. These risks highlight the critical need for ethically aligned practices and sufficient oversight. To mitigate these concerns, we subjected our text data to rigorous ethical review and anonymization. We also verified that the accompanying audio samples are free of Personally Identifiable Information (PII). Additionally, we mandate that all researchers utilizing this benchmark strictly adhere to the CC BY-NC-SA 4.0 license. We hope that the progress in speech generation technology will benefit society through responsible and ethical deployment.

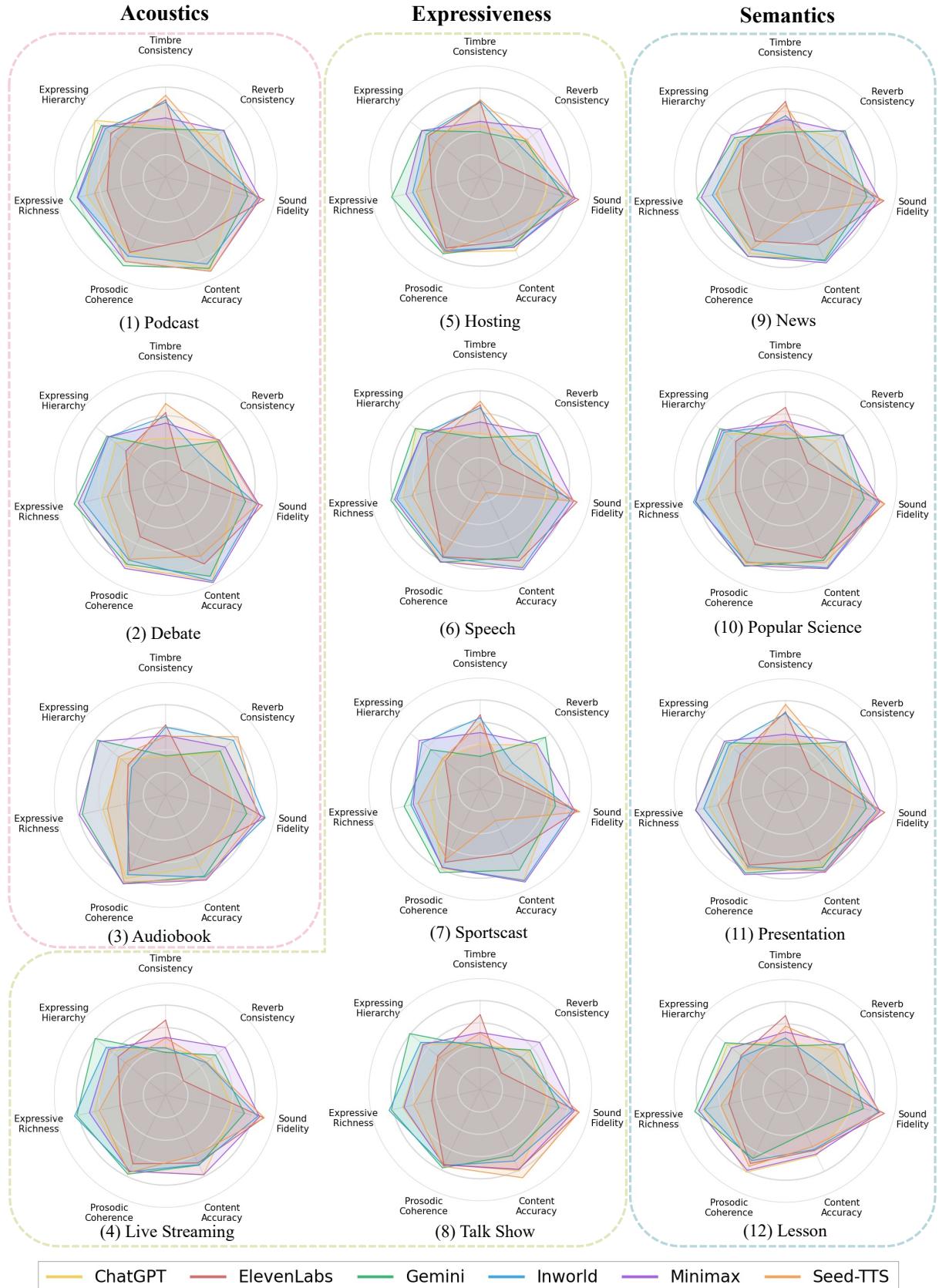


Figure 11: We visualize the performance of closed-source models in single-speaker long-form generation across various downstream scenarios using a radar chart. To ensure consistency, we normalize the metrics for Timbre Consistency, Reverb Consistency, and Content Accuracy within their respective minimum and maximum ranges. As a result, all metrics are presented such that higher values indicate better performance.

Table 14: **Evaluation results of long-form TTS models across two languages.** Metrics cover Acoustics (Timbre/Reverb Consistency, Fidelity), Semantics (Content Accuracy, Prosodic Coherence), and Expressiveness (Richness, Hierarchy). Closed-source models and open-source models are separately marked, with the best results in **bold** and the second best *italic*. Chinese results and English results are separately marked as well, with Chinese in black and English in red.

Models	Languages	Acoustics			Semantics		Expressiveness	
		Timbre(↑)	Reverb(↓)	Fidelity(↑)	Content(↓)	Prosody(↑)	Richness(↑)	Hierarchy(↑)
<i>Open-Source Models</i>								
SparkTTS	ZH	0.90	0.79	3.47	0.329	2.37	3.29	2.11
	EN	0.95	2.96	3.70	0.240	2.78	3.64	2.65
ZipVoice	ZH	0.90	1.65	3.55	0.072	3.24	3.16	2.87
	EN	0.89	2.47	3.47	0.396	3.13	1.71	1.34
GLM-TTS	ZH	0.93	1.52	3.99	0.035	4.07	3.17	3.12
	EN	0.94	1.70	3.90	0.118	3.21	2.19	1.96
CosyVoice2	ZH	0.90	1.74	3.57	0.032	3.62	3.47	3.13
	EN	0.93	2.95	4.02	0.168	2.84	2.56	2.39
CosyVoice3	ZH	0.94	1.83	3.83	0.034	3.92	3.36	2.83
	EN	0.93	2.68	3.82	0.141	2.83	2.23	2.07
MegaTTS3	ZH	0.93	2.12	3.67	0.035	3.92	3.02	2.88
	EN	0.93	1.50	3.43	0.108	3.30	2.60	2.17
IndexTTS2	ZH	0.95	1.28	2.39	0.033	3.96	4.02	3.30
	EN	0.92	2.15	3.15	0.135	3.33	3.15	2.62
FishSpeech	ZH	0.92	1.76	4.06	0.043	4.03	3.25	3.16
	EN	0.93	1.81	4.13	0.113	3.56	2.06	2.63
VibeVoice	ZH	0.91	1.54	3.88	0.047	3.91	3.47	3.34
	EN	0.95	2.75	3.75	0.111	3.88	3.95	3.34
F5TTS	ZH	0.88	<i>1.13</i>	3.12	0.072	3.28	3.50	2.73
	EN	0.92	2.51	3.65	0.113	3.54	2.64	2.81
Average	ZH	0.92	1.54	3.55	0.073	3.63	3.37	2.95
	EN	0.93	2.35	3.70	0.164	3.24	2.67	2.40
<i>Closed-Source Models</i>								
gemini-2.5-pro-preview-tts	ZH	0.90	1.38	3.13	0.059	4.13	4.20	3.53
	EN	0.92	1.49	3.19	0.169	3.69	4.07	3.48
OpanAI-tts-1-hd	ZH	0.91	1.65	2.69	0.043	4.00	3.20	3.07
	EN	0.92	1.82	2.60	0.119	3.82	3.71	3.43
MiniMax-Speech-2.6-hd	ZH	0.93	<i>1.43</i>	3.83	0.030	4.14	4.00	3.56
	EN	0.92	1.32	3.81	0.119	3.77	3.60	2.95
Elevenlabs Multilingual V2	ZH	0.95	3.04	4.00	0.100	3.26	1.79	2.38
	EN	0.96	3.05	4.04	0.115	3.73	2.87	2.97
Inworld-tts-1-max	ZH	0.94	2.19	3.72	0.053	3.73	3.41	2.92
	EN	0.92	2.19	3.74	0.114	3.69	3.95	3.13
Seed-TTS2	ZH	0.94	1.99	3.86	0.106	3.86	3.06	2.46
	EN	0.94	1.91	3.89	0.193	3.62	3.14	2.21
Average	ZH	0.93	1.95	3.54	0.065	3.85	3.28	2.99
	EN	0.93	1.96	3.55	0.138	3.72	3.56	3.03

Table 15: **Evaluation results of dialog generation models across two languages.** Metrics cover Acoustics (Timbre/Reverb Consistency, Fidelity), Semantics (Content Accuracy, Prosodic Coherence), and Expressiveness (Richness, Hierarchy). Closed-source models and open-source models are separately marked, with the best results in **bold** and the second best *italic*. Chinese results and English results are separately marked as well, with Chinese in black and English in red.

Models	Languages	Acoustics			Semantics		Expressiveness	
		Timbre(\uparrow)	Reverb(\downarrow)	Fidelity(\uparrow)	Content(\downarrow)	Prosody(\uparrow)	Richness(\uparrow)	Hierarchy(\uparrow)
<i>Open-Source Models</i>								
ZipVoice	ZH	0.90	3.15	2.65	0.069	4.01	3.01	2.87
	EN	0.91	3.91	2.67	<i>0.114</i>	3.34	2.24	2.72
MoonCast	ZH	0.89	<i>3.11</i>	2.56	0.313	3.25	2.58	2.60
	EN	0.91	3.01	2.68	0.125	3.08	2.78	2.79
FireRedTTS2	ZH	0.92	3.32	3.16	0.075	3.57	3.16	3.03
	EN	<i>0.93</i>	<i>3.64</i>	2.08	0.131	2.91	2.29	2.58
MOSS-TTSD	ZH	0.90	3.02	3.13	0.148	3.10	<i>3.66</i>	3.26
	EN	0.91	4.07	2.64	0.239	2.47	2.75	2.71
VibeVoice	ZH	0.90	3.26	3.32	0.106	3.48	3.74	3.34
	EN	0.91	3.91	<i>3.38</i>	0.125	<i>3.66</i>	3.78	<i>3.39</i>
SoulXPodcast	ZH	0.92	3.31	3.94	0.061	4.01	3.69	3.82
	EN	<i>0.94</i>	3.70	3.98	<i>0.090</i>	4.00	<i>3.18</i>	<i>3.59</i>
Average	ZH	0.91	3.20	3.13	0.129	3.42	3.31	3.15
	EN	0.92	3.71	3.07	0.154	3.24	2.84	2.96
<i>Closed-Source Models</i>								
Gemini-2.5-pro-preview-tts	ZH	0.91	3.07	3.05	0.086	4.12	<i>4.10</i>	4.11
	EN	0.93	3.26	2.96	<i>0.092</i>	4.00	4.02	<i>3.93</i>
OpenAI-tts-1-hd)	ZH	0.92	2.97	2.26	0.104	3.52	3.17	3.56
	EN	0.93	2.99	2.29	<i>0.103</i>	3.86	3.41	<i>3.84</i>
Elevenlabs Multilingual V2)	ZH	0.93	4.55	3.38	0.127	3.44	2.32	3.11
	EN	<i>0.93</i>	4.31	<i>3.58</i>	0.109	<i>3.89</i>	3.36	3.81
Seed-TTS-Podcast	ZH	0.92	2.48	3.90	0.063	4.16	4.19	4.26
	EN	<i>0.91</i>	<i>3.22</i>	<i>3.88</i>	0.108	3.70	<i>3.49</i>	3.42
Average	ZH	0.92	3.27	3.15	0.095	3.81	3.45	3.76
	EN	0.93	3.45	3.18	0.103	3.86	3.57	3.75

Prompt for Prosody Coherence

Role: Senior Linguistic Expert & Prosody Analyst. You are an expert in assessing speech naturalness, with a hypersensitivity to prosodic coherence, rhythmic hierarchy, and robotic artifacts.

Input Data:

- **Target Text:** The reference text script that needs to be synthesized.
- **Audio Output:** The speech audio generated by the TTS model (labeled as Output A).

Generation Requirements:

1. **Core Task:** Evaluate the audio's naturalness by analyzing its **prosodic structure** and **coherence** against the target text, rather than just audio quality.
2. **Dimension 1 - Prosody Coherence & Flow:** Assess the smoothness of the speech stream. Check for unnatural pauses, abrupt disjoints between words/phrases, and the logical flow of intonation across sentence boundaries.
3. **Dimension 2 - Rhythmic Hierarchy & Layering:** Evaluate the structural stress patterns. Does the speaker correctly emphasize content words while de-emphasizing function words? Is there a natural "melody" (intonation contour) rather than a flat or repetitive beat?
4. **Dimension 3 - Overall Naturalness:** Check for presence of human-like micro-prosody (e.g., breathiness, slight pitch variations).
5. **Format:** Strictly output a valid JSON object. No other text.

Scoring Guidelines (1.0–5.0, step of 0.5):

- **5.0 (Human-Parity):** Indistinguishable from a professional human speaker; perfect coherence and rich prosodic hierarchy.
- **4.0 (Natural):** Very smooth and pleasant; minor prosodic flaws only noticeable to experts; good structural layering.
- **3.0 (Acceptable):** Intelligible and decent flow; but lacks depth (flat hierarchy) or contains audible TTS artifacts.
- **2.0 (Mechanical):** Disjointed flow; unnatural pauses; wrong stress placement (e.g., stressing every word equally).
- **1.0 (Robotic):** Completely lifeless; broken prosody; difficult to listen to.

JSON Schema:

```
{  
  "Overall_Impression": "[Brief summary of naturalness and flaws]",  
  "Detailed_Analysis": {  
    "Coherence_and_Flow": "[Critique the smoothness and connection...]",  
    "Hierarchy_and_Layering": "[Analyze stress patterns and intonation curves...]",  
    "Naturalness": "[Comments on naturalness]"  
  },  
  "Score": [Number 1.0-5.0],  
}
```

Figure 12: Structured prompt for evaluating long-form audio's performance in Prosody Coherence.

Prompt for Expressive Hierarchy

Role: Senior Voice Director & Audio Engineer (Long-Form Specialist). You are an expert in long-form narration (audiobooks, documentaries), hyper-sensitive to monotony, repetitive patterns, and lack of structural progression.

Generation Requirements:

1. **Core Task:** Analyze how the performance **evolves over time**, focusing on "Layering and Hierarchy".
2. **Dimension 1 - Emotional Variation & Arc:** Evaluate progression from beginning to end, distinction between climax and exposition, and avoidance of "one-note" acting.
3. **Dimension 2 - Vocal Dynamics:** Check for macro/micro dynamics (volume/tempo shifts).
4. **Dimension 3 - Scene Appropriateness & Structural Fit:** Assess contextual adaptation to content structure and long-term engagement.
5. **Format:** Strictly output a valid JSON object. No other text.

Scoring Guidelines (1.0–5.0, step of 0.5):

- **5.0 (Masterful):** A journey with rich variety; no repetitive patterns; perfect for long listening.
- **4.0 (Strong):** Good dynamics and clear emotional shifts; avoids obvious monotony.
- **3.0 (Acceptable but Static):** Pleasant but lacks progression; risks boring the listener over time.
- **2.0 (Repetitive):** Clear signs of "looping prosody"; same intonation for every sentence.
- **1.0 (Robotic):** Lifeless; no dynamic range or emotional change; raw TTS-like.

JSON Schema:

```
{  
  "Overall_Impression": "[A brief summary of the long-form experience]",  
  "Hierarchy_Analysis": {  
    "Emotional_Arc": "[Describe the emotional progression...]",  
    "Dynamics_and_Rhythm": "[Critique the pacing and prosody...]",  
    "Scene_Fit": "[How well does it adapt to the structure?]"  
  },  
  "Score": [Number 1.0-5.0],  
  "Final_Recommendation": "[Highly Recommended / Recommended with Reservations / Not Recommended]"  
}
```

Figure 13: Structured prompt for evaluating long-form audio performance, focusing on expressive hierarchy.

Prompt for Expressive Richness

Role: You are a Senior Voice Director and Audio Engineer with standards equivalent to a top-tier animation studio. Your task is to meticulously evaluate a voice recording and determine if it meets professional standards.

Evaluation Dimension: Performance & Expressiveness

- **Emotional Resonance:** Genuine, layered emotion vs. flat/forced.
- **Character Portrayal:** Believable, consistent character; tone/age/personality coherence.
- **Storytelling & Immersion:** Narrative flow, atmosphere, and engagement.

Exclusions: Ignore sudden stop, audio quality, timbre consistency, and pronunciation accuracy.

Scoring Guidelines (1.0–5.0):

- **5.0 (Outstanding):** Richly expressive, immersive, and artistically elevated.
- **4.0 (Strong):** High expressiveness, close to professional but lacks fine nuance.
- **3.0 (Adequate):** Meets basic requirements; emotions may be somewhat generic.
- **2.0 (Flat):** Unconvincing, weak emotional expression, clearly subpar.
- **1.0 (Mechanical):** Synthetic/lifeless, no emotional color or dynamics.

JSON Schema:

```
{  
  "Overall_Impression": "A brief, one-sentence summary of the audio.",  
  "Expressiveness": "Detailed professional analysis of the performance dimension.",  
  "Expressiveness_Score": [Number between 1.0 and 5.0 in 0.5 increments],  
  "Final_Recommendation": "[Highly Recommended / Recommended with Reservations / Not Recommended]"  
}
```

Figure 14: The structured prompt used for professional voice performance and expressiveness assessment.