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Abstract001

Spatial audio vocoders aim to convert mel-002
spectrograms produced by generative models003
into spatial audio waveforms. Most existing004
vocoder research focuses on monaural audio,005
and direct extensions to spatial audio often de-006
grade spatial quality by ignoring inter-channel007
cues. We present CSAVocoder, a causal GAN-008
based Spatial Audio Vocoder that jointly opti-009
mizes waveform fidelity and spatial rendering.010
Our framework introduces a spatial adaptor that011
fuses multi-channel mel-spectrograms with dy-012
namic source-listener pose information, and a013
spatial consistency discriminator that explicitly014
supervises inter-channel spatial cues such as015
interaural level and phase differences. To meet016
real-time requirements, we design a strictly017
causal, stateful generator that supports efficient018
streaming inference with constant memory019
overhead. Experiments on large-scale spatial020
audio datasets demonstrate that CSAVocoder021
ensures audio quality and spatial fidelity while022
maintaining real-time performance. Our demo023
page is at: https://csavocoder.github.io.024

1 Introduction025

Unlike monaural audio, spatial audio renders sound026

sources at different directions and distances, pro-027

viding a more immersive listening experience. It028

reconstructs a three-dimensional sound field and029

exploits the natural localization mechanisms of the030

human auditory system. By accurately modeling031

these cues, spatial audio delivers a strong sense of032

presence and realism in digital environments.033

Spatial audio is increasingly important in ap-034

plications such as virtual reality, augmented real-035

ity (Gupta et al., 2022; Kailas and Tiwari, 2021),036

and immersive gaming (Raghuvanshi and Snyder,037

2018; Broderick et al., 2018; Yadegari et al., 2022).038

Recent generative models have made progress039

in spatial audio synthesis (Zhu et al., 2025; Lu040

et al., 2025), but many of them operate in the mel-041

spectrogram domain and rely on a vocoder to pro-042

duce waveforms. Works such as ISDrama (Zhang 043

et al., 2025a) and DualSpec (Zhao et al., 2025a) use 044

pretrained HiFi-GAN-style vocoders and achieve 045

high single-channel quality, yet they largely ignore 046

inter-channel spatial consistency. Most vocoder 047

studies still target single-channel audio, and direct 048

extensions to spatial audio often degrade spatial 049

quality because they ignore inter-channel cues so 050

the necessity of relative pose between the sound 051

source and the listener is a critical spatial factor 052

in spatial audio rendering. Recent works (Heydari 053

et al., 2025; Singh Kushwaha et al., 2024; Templin 054

et al., 2025) use various forms of spatial informa- 055

tion, including explicit coordinates and features 056

extracted from visual inputs. The relative position 057

controls loudness and spectral coloration, while 058

orientation affects perceived direction and spatial 059

awareness. Therefore, an effective spatial audio 060

vocoder must explicitly model and exploit pose in- 061

formation to improve both signal quality and spatial 062

perception. 063

On the other hand, real-time and efficiency re- 064

quirements further complicate spatial audio ren- 065

dering. In virtual and augmented reality, user in- 066

teraction and rapid scene changes require spatial 067

audio to react with low latency in order to maintain 068

immersion. Prior work (Joy et al., 2024; Zhang 069

et al., 2025a) emphasizes real-time rendering and 070

the real-time factor (RTF). Since the vocoder is the 071

final stage of spatial audio generation, its inference 072

speed directly impacts end-to-end system latency 073

and is crucial for real-time applications. 074

Designing a spatial audio vocoder that is both 075

powerful and efficient is therefore challenging. The 076

model must simultaneously (1) synthesize wave- 077

forms with high fidelity, (2) render perceptually 078

valid spatial cues such as interaural level differ- 079

ences (ILD) and interaural phase differences (IPD), 080

and (3) learn the complex mapping from pose to 081

acoustic behavior, including source position and 082

motion. In addition, the vocoder needs to be causal 083
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and support low-latency streaming inference that084

generates audio continuously in chunks.085

To address these challenges, we propose CSAV-086

ocoder. In summary, our contributions are:087

• We design a GAN-based spatial audio vocoder088

with a causal architecture that supports low-089

latency streaming inference while maintaining090

high-quality spatial audio synthesis.091

• We introduce a pose-conditioning mechanism092

using position adaptor that encodes the relative093

source–listener pose and mel adaptor to capture094

inter-channel relationships, improving spatial au-095

dio rendering and perceptual quality.096

• We propose an architecture that supports multiple097

spatial audio formats and learns an end-to-end098

mapping from multi-channel mel-spectrograms099

to multi-channel spatial audio waveforms.100

2 Related Work101

Our work lies at the intersection of spatial audio102

rendering, high-fidelity neural vocoders, and real-103

time synthesis.104

2.1 Spatial Audio Rendering105

Spatial audio rendering aims to construct immer-106

sive auditory scenes by modeling sound propaga-107

tion in three-dimensional space. Among existing108

representations, binaural audio and First-Order Am-109

bisonics (FOA) are particularly central. Binaural110

audio directly models ear-canal signals via head-111

related transfer functions (HRTFs) and is the final112

perceptual format for headphone playback, while113

FOA provides a spherical-harmonic, scene-centric114

representation with rotational equivariance and is115

widely used in VR and 360◦ video systems. These116

two formats are therefore the primary targets of117

many generative spatial audio models.118

A broad line of work studies spatial audio gen-119

eration from visual, textual, or multimodal inputs.120

2.5D Visual Sound (Gao and Grauman, 2019) up-121

mixes monophonic audio to binaural signals using122

visual cues in a regression setting. More recent123

methods move toward end-to-end spatial genera-124

tion: ViSAGe (Kim et al., 2025) predicts FOA from125

silent video, ISDrama (Zhang et al., 2025a) models126

long-form spatial narratives with explicit real-time127

constraints, Diff-SAGe (Singh Kushwaha et al.,128

2024) applies diffusion in the complex spectral do-129

main to better preserve inter-channel phase, and130

BEWO (Sun et al., 2024) enables text-driven bin-131

aural generation. ImmerseDiffusion (Heydari et al.,132

2025) and In-the-Wild Audio Spatialization (Pan 133

et al., 2025) use spatial and semantic conditions 134

to synthesize FOA or binaural audio for complex 135

scenes. 136

Many of these systems operate primarily in the 137

spectral domain and rely on separate vocoders or 138

reconstruction stages, which introduce additional 139

latency. Spatial information is often injected im- 140

plicitly via latent variables or high-level prompts, 141

and only a few works, such as ISDrama and Im- 142

merseDiffusion, combine explicit spatial condition- 143

ing with considerations of real-time performance. 144

This places strong requirements on the spatial au- 145

dio vocoder at the end of the pipeline to generate 146

high quality spatial audio with precise spatial cues. 147

2.2 Neural Vocoders 148

Neural vocoders map acoustic features to wave- 149

forms and form the last stage of audio generation. 150

GAN-based vocoders dominate due to favorable 151

quality-efficiency trade-offs. HiFi-GAN (Kong 152

et al., 2020) introduces multi-period and multi- 153

scale discriminators; BigVGAN (Lee et al., 2022) 154

improves robustness via periodic activations and 155

anti-aliasing; FARGAN (Valin et al., 2024), CAR- 156

GAN (Morrison et al., 2022), and QGAN (Chaud- 157

hary and Abrol, 2024) reduce parameters and com- 158

puting complexity. MusicHifi (Zhu et al., 2024) 159

is an efficient high-fidelity stereophonic vocoder 160

which can be used to enhance the fidelity of a low- 161

resolution audio. 162

Alternative approaches operate in structured do- 163

mains. Vocos (Siuzdak, 2024) predicts complex 164

STFT coefficients; AF-Vocoder (Chen et al., 2025) 165

applies frequency-domain artifact filtering; Dis- 166

Coder (Lanzendörfer et al., 2025) generates in the 167

latent space of neural audio codecs. Diffusion 168

and flow-based vocoders such as DiffWave (Kong 169

et al., 2021), Fregrad (Nguyen et al., 2024), and 170

WaveFM (Luo et al., 2025) offer high perceptual 171

quality via iterative denoising or direct transport 172

learning. These existing vocoders primarily tar- 173

get monophonic or stereophonic audio and do not 174

explicitly model spatial cues, limiting their effec- 175

tiveness for spatial audio rendering. 176

2.3 Real-time Speech Synthesis 177

Real-time synthesis is critical for interactive ap- 178

plications where latency must stay below percep- 179

tual thresholds, favoring causal architectures and 180

streaming inference. Online voice conversion sys- 181

tems such as CONAN (Zhang et al., 2025b) use 182

2



chunk-wise state caching for bounded-delay con-183

version. For vocoders, WaveHax (Yoneyama et al.,184

2025b) and MS-WaveHax (Yoneyama et al., 2025a)185

adopt causal convolutions with shuffle-based up-186

sampling; DLL-APNet (Du et al., 2025) combines187

distillation and simplification; MelFlow (Welker188

et al., 2025) adapts flow models to causal mel-to-189

waveform mapping; BinauralFlow (Liang et al.,190

2025) demonstrates streamable binaural genera-191

tion. These advances motivate spatial vocoders that192

jointly achieve high spatial fidelity and streaming193

capability.194

3 Method195

3.1 Task Definition196

We aim to synthesize a multi-channel spatial audio197

waveform y ∈ RC×L from a multi-channel mel-198

spectrogram M ∈ RC×F×T and the corresponding199

spatial pose sequence P ∈ RDp×Tp . Here, C de-200

notes the number of channels, L is the waveform201

length, F is the number of mel frequency bins, and202

T is the number of mel frames. The sequence P203

captures the time-varying pose of the sound source204

relative to the listener, where Dp is the pose dimen-205

sion and Tp is the number of pose samples. Each206

pose vector consists of a 3D Cartesian position207

(x, y, z) and a 4D quaternion (qw, qx, qy, qz) that208

encodes orientation, so Dp = 7.209

We formulate the problem as learning a condi-210

tional generative function G that maps the inputs211

to the target waveform:212

y = G(M,P; θ), (1)213

where θ denotes the learnable parameters of the214

generator.215

3.2 GAN-based Vocoder216

Our framework is built on HiFi-GAN vocoder con-217

sisting of a generator G and a set of discriminators218

D, and extend its generator and discriminator stack219

to support spatial conditioning and strictly causal,220

streaming synthesis.221

3.2.1 Generator222

The generator follows the overall topology of HiFi-223

GAN which uses a convolutional network to upsam-224

ple the input mel-spectrogram on temporal domain.225

The Generator takes output from the Spatial Mel226

Adaptor and Spatial Position Adaptor as condi-227

tioning inputs. Tensors are fed into a series of228

upsampling and residual blocks to gradually in- 229

crease the temporal resolution to that of the target 230

waveform. We replace standard transposed convo- 231

lutions with our ShuffleUpsampleBlock. First, the 232

CausalConv1d block projects the channels from 233

C to Cout · s, producing X′ ∈ RB×(Couts)×Tin . 234

Then a ShuffleBlock reshapes this tensor to X′′ ∈ 235

RB×Cout×(Tins) by folding extra channels into the 236

time dimension. Since pixel shuffle is a pure ten- 237

sor reordering without temporal mixing, it pre- 238

serves the causality of the preceding convolution 239

and yields artifact-free causal upsampling. 240

The residual blocks forming the multi-receptive- 241

field fusion (MRF) stack are modified in the same 242

spirit. Each StreamingResBlock consists of several 243

causal convolutions with different dilation rates to 244

capture patterns at multiple temporal scales, and 245

maintains an internal buffer whose length matches 246

its effective left context. 247

3.2.2 Discriminator 248

Conventional Wave and Spectral Discriminators 249

To ensure high fidelity in both waveform and spec- 250

tral domains, we adopt the standard MPD and MSD 251

from HiFi-GAN (Kong et al., 2020) and MRD from 252

BigVGAN (Lee et al., 2022) to ensure high-fidelity 253

waveform and spectral reconstruction. Each sub- 254

discriminator computes an STFT with a specific 255

configuration, allowing the model to detect arti- 256

facts that appear only at particular time-frequency 257

resolutions. 258

Spatial Consistency Discriminator To explic- 259

itly supervise spatial structure, we introduce a Spa- 260

tial Consistency Discriminator (SCD) that operates 261

on multi-channel log-mel spectrograms and pro- 262

vides spatially informed adversarial gradients to the 263

generator. Given a multi-channel waveform y ∈ 264

RB×C×T , the SCD computes M ∈ RB×C×F×T ′
265

and projects it via a 2D convolution into latent 266

features X ∈ RB×d×C×T ′
. An axial-attention 267

backbone then applies MHSA along the tempo- 268

ral axis (B · C, T ′, d) and along the channel axis 269

(B · T ′, C, d), jointly modeling long-range dynam- 270

ics and inter-channel relationships such as ILD/IPD 271

in binaural signals and coherent patterns in FOA. 272

A lightweight convolutional head finally maps the 273

attended features to a scalar spatial consistency 274

score per segment, complementing conventional 275

discriminators that primarily target single-channel 276

fidelity. 277
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Figure 1: Overview of our model architecture.

3.2.3 Training Objectives278

To train the generator G (the vector-field network279

vθ) and the discriminator set D, we use a compos-280

ite objective composed of several weighted loss281

terms. We adopt the standard Least-Squares GAN282

adversarial loss (Ladv) (Mao et al., 2017), Feature283

Matching loss(Lfm) (Kumar et al., 2019), and multi-284

resolution spectral reconstruction losses (Lmel and285

LSTFT) (Kong et al., 2020). The detailed formu-286

lations of these standard objectives are provided287

in Appendix B. Our primary contribution to the288

objective function is the format-aware Spatial Loss,289

designed to explicitly supervise spatial cues.290

Spatial Loss Standard spectral losses treat chan-291

nels independently, failing to constrain inter-292

channel spatial cues. We propose a format-aware293

spatial loss Lspatial that explicitly supervises physi-294

cal attributes.295

For Binaural Audio, based on the Duplex The-296

ory, we combine Interaural Phase Difference (IPD)297

and Level Difference (ILD) losses: LBin
spatial =298

λIPDLIPD + λILDLILD. Specifically, LIPD operates299

on multi-resolution STFTs and compares phase300

differences in a sine-cosine embedding to avoid301

wrapping, with supervision concentrated in the low-302

frequency region using a Gaussian weighting. Con-303

versely, LILD measures the discrepancy between304

log-magnitude level differences of the two ears,305

emphasizing high frequencies through a comple-306

mentary weighting.307

For FOA Audio, we define physical descriptors:308

LFOA
spatial = λivLiv_dir +λrLr +λdiffLdiff +λelogLelog. 309

Direction-related terms (Liv_dir,Lr) constrain the 310

intensity vector’s angle and magnitude with a 311

low-frequency bias, while diffusion-related terms 312

(Ldiff,Lelog) capture ambient envelopment with a 313

mid-high-frequency bias. 314

To stabilize training, all terms are modulated 315

by an energy-based soft mask derived from the 316

ground-truth signal. Detailed formulations are in 317

Appendix B.4. 318

Full Objective The total loss functions for the 319

generator and the discriminators are defined as 320

weighted sums of the components described above. 321

For each discriminator Dk in the discriminator 322

set D, the total loss consists only of the adversarial 323

term: 324

LD =
∑
k

Ladv(Dk;G). (2) 325

For the generator G, the total loss is defined as 326

LG = Ladv(G;D) + λfmLfm + λmelLmel 327

+ λSTFTLSTFT + λspatialLspatial, (3) 328

where λfm, λmel, λSTFT, and λspatial are hyperpa- 329

rameters that balance the contributions of different 330

loss terms. 331

3.3 Causal Architecture for Streaming 332

Synthesis 333

We redesign the HiFi-GAN generator as a fully 334

causal, explicitly stateful architecture tailored for 335
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Figure 2: This figure shows the continuous streaming infer pipeline. Starting with multi-channel mel-spectrogram,
we compute Mel Embedding and Pos information with Mel Adaptor and Position Adaptor. Then they are fed into
the Conv Backbone and after upsampling and resblock, a chunk of wave is generated. All streaming blocks has its
own state cache in the cache bank which restores a few chunk states before themselves and computes results strictly
following causal restrictions.

streaming synthesis. All stages from mel features336

to waveform are constructed to satisfy strict causal-337

ity, while a stateful inference mechanism avoids338

redundant computation in chunk-based processing.339

Strict Causal Property When mapping a mel-340

spectrogram M = {m1, . . . ,mT } to waveform341

W = {w1, . . . , wT ′}. , strict causality requires342

that each output sample wt depends only on input343

frames {m1, . . . ,mi} whose timestamps do not ex-344

ceed that of wt. Any dependency on future frames345

mj with j > i violates this constraint. Our design346

enforces this property at the operator level.347

Stateful Streaming Inference. Causality alone348

is insufficient for efficient streaming, since naively349

concatenating long contextual prefixes for each350

chunk leads to substantial redundant computation.351

We therefore implement all context-dependent lay-352

ers in a stateful form, where each layer accepts both353

the current input chunk and a compact cache from354

the previous step, and returns the current output355

together with an updated cache that stores exactly356

the left-context features needed for the next chunk.357

As shown in Figure 2, during streaming synthesis,358

the generator processes a sequence of mel chunks359

while propagating a global state object that aggre-360

gates the caches of all stateful layers, avoiding any 361

recomputation of past activations. 362

3.4 Spatial Adaptor 363

Standard mono-channel vocoders lack mechanisms 364

to process multi-channel spectrograms or incorpo- 365

rate heterogeneous pose conditioning. To bridge 366

this gap, we introduce the Spatial Adaptor, com- 367

prising two parallel modules to encode spectral and 368

geometric cues respectively. 369

3.4.1 Attentional Mel Adaptor 370

This module fuses the multi-channel mel- 371

spectrogram M ∈ RB×C×F×T into a unified 372

single-stream representation Xmel ∈ RB×dhifi×T 373

while preserving implicit spatial cues (e.g., 374

IPD/ILD). First, we apply a shared weight- 375

normalized 1D convolution to each channel in- 376

dependently to extract local features Xfeat ∈ 377

RB×C×d×T . To capture nonlinear inter-channel 378

dependencies, we then employ Multi-Head Self- 379

Attention along the channel axis at each time step. 380

Unlike fixed difference operations, this data-driven 381

approach dynamically weights the contribution of 382

each channel. Finally, the attended features are con- 383

catenated and projected via a 1× 1 convolution to 384
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the backbone dimension dhifi, serving as the unified385

input to the generator.386

3.4.2 Spatial Position Adaptor387

This adaptor converts the raw pose sequence P into388

dense, physically meaningful conditioning Xpos.389

Feature Extraction & Encoding: From the 7D390

raw pose, we derive Cartesian coordinates and for-391

ward vectors (from quaternions), augmented with392

first-order velocity differences to capture kinematic393

motion. To mitigate the spectral bias of MLPs,394

we map these scalars to high-dimensional sinu-395

soidal representations using Fourier feature encod-396

ing (Mildenhall et al., 2021), enabling sensitivity397

to fine-grained spatial changes.398

Temporal Modeling & Injection: The en-399

coded features are processed by CausalPosEncoder400

(stacked causal dilated convolutions) to model mo-401

tion trajectories. We inject this condition into402

the generator via Feature-wise Linear Modulation403

(FiLM). For each upsampling block, audio features404

xaudio are modulated by scaling γ and bias β pro-405

jected from the pose embeddings: FiLM(xaudio) =406

(1 + tanh(γ)) · xaudio + β.407

3.5 Unified Framework for Spatial Audio408

Traditional vocoders are mono-centric or naïvely409

replicate single-channel outputs, limiting their ap-410

plicability to spatial audio. We design a channel-411

free generator where the shared backbone performs412

identical upsampling for any channel count: the413

Attentional Mel Adaptor fuses a C-channel mel-414

spectrogram into a fixed-dimensional representa-415

tion, and the final projection layer outputs exactly416

C waveform channels. For adversarial training,417

we pair this flexible generator with channel-aware418

discriminator heads specialized for each format.419

At inference, a single checkpoint handles arbi-420

trary supported formats by mapping the input mel-421

spectrogram and its channel configuration directly422

to spatial audio output. The design is naturally ex-423

tensible: supporting new standards (e.g., 5.1 or 7.1424

surround) requires only adding a format-specific425

spatial loss and discriminator head, without modi-426

fying the generator backbone.427

4 Experiment428

4.1 Experiment Details429

Dataset We use both binaural and FOA formats430

data. For binaural data, we adopt the MRSSpeech431

subset of MRSAudio (Guo et al., 2025) and the 432

EasyCom (Donley et al., 2021) dataset. For 433

FOA data, we use the Spatial LibriSpeech (Sara- 434

bia et al., 2023) dataset, synthesized from Lib- 435

riSpeech (Panayotov et al., 2015), which offers 436

a large number of FOA samples with spatial anno- 437

tations. To increase spatial and acoustic diversity, 438

we further generate simulated data using the sound- 439

space toolkit. In total, our training corpus contains 440

roughly 600 hours of binaural data (about 350k 441

samples) and 900 hours of FOA data (about 310k 442

samples), all stored as 16-bit PCM at a sampling 443

rate of 48 kHz. 444

We preprocess EasyCom and MRSSpeech 445

datasets using the ClearVoice (Zhao et al., 2025b) 446

denoising algorithm to enhance audio quality. We 447

extract 700 random segments from all datasets as 448

test set, then split the remaining dataset into train- 449

ing/validation sets with a ratio of 9:1. The detailed 450

statistics are shown in appendix C. 451

Baseline We compare our proposed method with 452

several vocoder baselines. We choose original 453

HiFi-GAN (Kong et al., 2020), Vocos (Siuzdak, 454

2024) CARGAN (Morrison et al., 2022), FAR- 455

GAN (Valin et al., 2024) and WaveFM (Luo et al., 456

2025) as our baselines. While recent works such 457

as MusicHiFi (Zhu et al., 2024) have explored spa- 458

tial audio vocoding, their implementations are not 459

publicly available.Since there is a lack of dedicated 460

spatial vocoder models for spatial audio generation, 461

we select the above-mentioned baselines, which 462

have demonstrated strong performance in monaural 463

audio generation tasks. We perform channel-wise 464

inference to generate binaural and FOA format au- 465

dio for comparison with our model. 466

Metrics Our evaluation protocol comprises both 467

subjective listening tests and objective metrics. 468

The objective evaluation addresses general audio 469

quality and spectral/temporal similarity as well as 470

spatial characteristics. 471

For waveform and spectral similarity we adopt 472

the metrics used in BinauralGrad(Leng et al., 2022) 473

MCD(Mel-cepstral distortion) to measure spectral 474

distortion, Periodicity to assess periodicity in the 475

audio. and MRSTFT, which combines spectral con- 476

vergence with log- and linear-magnitude terms to 477

improve spectral alignment. We also report PESQ 478

as a perceptual measure for speech-related quality 479

assessment. Except for PESQ, lower metric values 480

indicate better performance. 481

To quantify spatial fidelity, we introduce two 482

6



consistency measures ANG Cos and DIS Cos to re-483

spectively evaluate angular and distance similarity484

between generated and reference signals. Practi-485

cally, we extract angular and distance embeddings486

from binaural audio using Spatial-AST. Because487

Spatial-AST(Zheng et al., 2024) produces position488

estimates only for static sources, we partition each489

audio into 1-second segments, compute the cosine490

similarity between predicted and ground-truth em-491

beddings within each segment, and then average492

these segment-level similarities to obtain an overall493

spatial-consistency score. These metrics are report494

in percentage format.495

we utilize subjective MOS-Q (Mean Opinion496

Score for Quality) to evaluate the quality of gener-497

ated audio and MOS-P (Mean Opinion Score for498

Position) to assess spatial perception. Implementa-499

tion details are in Appendix F.500

4.2 Quantitative Comparison501

We compare our model with existing vocoder502

baselines and present the metric results in Ta-503

ble 1. As shown in the table, our approach sig-504

nificantly outperforms all baselines on spatial met-505

rics while achieving competitive results on audio506

metrics. This demonstrates that explicitly model-507

ing inter-channel relationships through our Spatial508

Mel Adaptor and supervising spatial cues via the509

Spatial Consistency Discriminator are effective for510

preserving spatial information. For audio quality511

metrics, our model achieves qualitative reconstruc-512

tion results. Our PESQ score is lower than non-513

causal SOTA baselines such as Vocos and WaveFM,514

which we attribute to the strictly causal constraint515

as our causal convolutions can only access past516

context, whereas non-causal models leverage bidi-517

rectional receptive fields that benefit perceptual518

quality. More results on FOA are in Appendix D.519

We report the Real-Time Factor (RTF) measured520

on a single NVIDIA RTX 4090 GPU. Our model521

achieves RTF = 0.1587, which is well below unity522

and confirms that our causal streaming architecture523

supports real-time generation. And detailed results524

of latency experiment are in Appendix E.525

These results demonstrate that our model effec-526

tively bridges the gap between high-fidelity wave-527

form synthesis and accurate spatial rendering. The528

causal architecture introduces a minor quality trade-529

off compared to non-causal models, but this is an530

acceptable cost for enabling low-latency streaming531

applications.532

4.3 Qualitative Comparison 533

We conduct a qualitative comparison of our pro- 534

posed model with the baselines. We present the 535

generated audio samples in Figure 3. The first row 536

is the GT audio and the second is audio predicted by 537

our model, followed by baseline predictions. Our 538

causal model preserves the harmonic stacks and 539

formant trajectories that closely match the ground 540

truth on both channels, while maintaining consis- 541

tent left-right spectral patterns. Compared with the 542

baselines, our results exhibit sharper and more co- 543

herent harmonic structures with fewer band-wise 544

artifacts and a cleaner noise floor. Although our 545

causal generation still shows slightly smoother tran- 546

sients and mildly reduced high-frequency detail 547

than non-causal counterparts, it achieves a highly 548

similar overall spectral structure, indicating that 549

high perceptual quality is attainable under causal 550

constraints. We present more qualitative results in 551

our demo page. 552

4.4 Subjective Evaluation 553

We conduct subjective listening tests to evaluate 554

the quality and spatial perception of the generated 555

audio. 556

We show the subjective evaluation result in Ta- 557

ble 2. For spatial quality MOS-P test we ask lis- 558

teners to rate how accurately they can perceive the 559

position of the sound source in the generated au- 560

dio compared to the ground truth position on a 561

scale from 1 to 5. Our model achieves the highest 562

MOS-P score among all models, indicating supe- 563

rior spatial perception. For audio quality MOS-Q 564

test we ask listeners to rate the overall audio qual- 565

ity of the generated samples on a scale from 1 to 5. 566

Our model also achieves high MOS-Q score, but 567

causal generating may be slightly inferior in audio 568

quality compared to non-causal models as they are 569

able to utilize future context. 570

Model MOS-P MOS-Q

HiFi-GAN 3.86± 0.19 3.98± 0.17
CARGAN 3.90± 0.18 4.03± 0.14
FARGAN 3.93± 0.14 4.07± 0.15
WaveFM 4.13± 0.13 4.17± 0.12
Vocos 4.09± 0.15 4.24± 0.11

Ours 4.25± 0.16 4.09± 0.21

GT 4.42± 0.11 4.41± 0.16

Table 2: Subjective Evaluation Results
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Model ANG
COS (↑)

DIS
COS (↑) MRSTFT (↓) PESQ (↑) MCD (↓) Periodicity(↓) RTF (↓)

HiFi-GAN 39.07 68.37 1.470 1.562 5.329 0.169 0.0622
CARGAN 30.00 63.71 1.194 1.739 3.377 0.160 0.1348
FARGAN 23.53 56.03 1.219 1.885 3.447 0.161 0.1916
WaveFM 41.36 71.96 1.079 2.400 2.727 0.141 0.1634
Vocos 40.04 70.23 1.039 2.510 1.892 0.113 0.0339

Ours 62.11 77.05 1.223 2.109 2.153 0.107 0.1587

Table 1: Quantitative Comparison

Figure 3: Qualitative comparison.

4.5 Ablation Study571

We perform ablation studies of our proposed com-572

ponents and present the results in Table 3.573

All proposed components contribute to the over-574

all performance of our model. Removing Spatial575

Mel Adaptor causes significant drop in spatial met-576

rics, as no inter-channel information is utilized.577

Using 4 attention heads in Spatial Mel Adaptor578

yields the best performance. However, removing579

the Position Adaptor results in moderate perfor-580

mance degradation, indicating that spatial informa-581

tion can still be partially captured through Spatial582

Mel Adaptor. The experiment shows that the Spa-583

tial Consistency Discriminator helps improve spa-584

tial metrics. But during our experiments, we find585

that only careful tuning of the weight of adversarial586

hyperparameters can lead to performance improve-587

ment, otherwise it may cause training instability.588

589

5 Conclusion590

We present CSAVocoder, a spatial audio vocoder591

that jointly addresses high-fidelity waveform syn-592

thesis and accurate spatial rendering. Our frame-593

work extends the GAN architecture with three key594

innovations: (1) a spatial adaptor that fuses multi-595

channel mel-spectrograms with dynamic pose in-596

formation to capture inter-channel relationships, (2)597

a spatial consistency discriminator that explicitly598

Setting ANG
COS (↑)

DIS
COS (↑)

w/o Mel Adaptor 42.60 65.39
Mel Adaptor 2 head 61.03 76.55
Mel Adaptor 8 head 61.50 76.70
w/o SCD 58.82 74.63
w/o Position Adaptor 54.78 70.63

Mel Adaptor 4 head 62.11 77.05

Table 3: Ablation Study

supervises spatial cues, and (3) a strictly causal, 599

stateful generator that enables efficient streaming 600

inference with constant memory overhead. 601

Experimental results demonstrate that CSAV- 602

ocoder outperforms existing channel-wise vocoders 603

in spatial fidelity and synthesis well audio qual- 604

ity while maintaining real-time performance. The 605

universal architecture supports multiple spatial au- 606

dio formats without format-specific modifications, 607

making it a practical solution for immersive au- 608

dio applications such as virtual reality, augmented 609

reality, and spatial communication. 610

We hope that the explicit modeling of spatial in- 611

formation and the causal streaming design provide 612

a strong foundation for future work on real-time 613

spatial audio generation. 614
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Limitations615

Our work has three main limitations. First, es-616

tablishing fair comparisons against causal base-617

lines is challenging because different implemen-618

tations adopt distinct buffering strategies and run-619

time optimizations that affect both latency and qual-620

ity. Many strong vocoders are optimized for of-621

fline generation and benefit from non-causal con-622

text or heavier post-processing; even when adapted623

to streaming, their engineering choices can dom-624

inate measured runtime. A standardized causal-625

baseline suite with matched end-to-end latency bud-626

gets and consistent objective measurements is left627

for future work. Second, we focus on binaural628

and FOA formats; extending to higher-order am-629

bisonics (HOA), multichannel loudspeaker layouts630

(e.g., 5.1/7.1), object-based audio, and personalized631

HRTF rendering is non-trivial. Increasing channel632

counts changes the required inductive bias, stabil-633

ity of adversarial training, and computational cost,634

and different ambisonic conventions may introduce635

dataset mismatches. Third, we condition on pose636

(position and orientation), but alternative or com-637

plementary representations may be more robust or638

expressive, such as relative geometry features (dis-639

tance/azimuth/elevation), scene-aware embeddings640

from visual or 3D context, or learned spatial tokens641

that summarize multi-source environments. We do642

not exhaustively explore these design axes.643

Ethical Considerations644

This paper presents CSAVocoder, a causal and state-645

ful vocoder for low-latency spatial audio generation646

conditioned on acoustic features. While the model647

does not generate linguistic content on its own, it648

can be integrated into upstream TTS/VC systems;649

therefore, both model- and data-related risks must650

be considered.651

Data provenance, licensing, and privacy. We652

rely on publicly available speech/spatial-audio cor-653

pora and simulation pipelines. We do not claim654

ownership of any third-party audio content and rec-655

ommend that any release avoid redistributing raw656

audio unless explicitly permitted by original licens-657

es/terms. Derived artifacts such as file lists, splits,658

and evaluation scripts should be shared in a way659

that enables reproducibility while reducing privacy660

exposure. Speech datasets may contain personally661

identifying information or sensitive attributes.662

Risks from real-time generation and speech pri- 663

vacy. Low-latency speech generation can enable 664

near-real-time impersonation, “live” spoofing in 665

voice authentication, and the re-synthesis of inter- 666

cepted private conversations. Spatial audio further 667

increases realism and may strengthen deceptive sce- 668

narios. In addition, pose conditioning introduces 669

an auxiliary privacy surface: logged 3D trajecto- 670

ries and orientations can reveal behavioral patterns, 671

attention, or activity context in immersive systems. 672

Potential harmful applications. Beyond deep- 673

fakes, potential misuse includes covert surveillance, 674

harassment, social engineering, or generating mis- 675

leading evidence. Dataset misuse may include 676

training downstream models for speaker identifica- 677

tion, demographic profiling, or other applications 678

that participants did not consent to, especially when 679

data is repurposed outside its original scope. 680

Mitigations and responsible release. We recom- 681

mend (i) clear acceptable-use terms and licenses; 682

(ii) optional watermarking/provenance signals and 683

guidance for detection; (iii) restricting and docu- 684

menting deployment contexts; (iv) minimizing re- 685

tention of raw audio, intermediate representations, 686

and pose logs; and (v) reporting limitations and 687

failure modes. For listening tests, risks are minimal 688

but include fatigue; conservative volume, breaks, 689

and withdrawal options are advised. 690

Bias and environmental impact. Training data 691

and simulators may under-represent languages, ac- 692

cents, acoustic environments, and accessibility- 693

related speech characteristics, leading to uneven 694

performance. Finally, while causal inference can 695

reduce runtime cost, training remains compute- 696

intensive; we encourage transparent reporting of 697

compute and settings to support reproducibility and 698

responsible scaling. 699
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A Implementation Details934

This appendix provides the detailed hyperparam-935

eters and architectural configurations used in our936

experiments.937

A.1 Audio and Spectrogram Parameters938

All audio processing and mel-spectrogram extrac-939

tion are conducted using the parameters listed in940

Table 4. The overall upsampling factor of the gen-941

erator is set to 320 to match the hop size used in942

mel-spectrogram extraction.943

Table 4: Audio processing and mel-spectrogram extrac-
tion parameters

Parameter Value

Sample rate 48,000 Hz
FFT size 1024
Hop size 320
Window size 1024
Number of mel bins 128
Mel fmin 20 Hz
Mel fmax 24,000 Hz

A.2 Generator Architecture944

The generator backbone G is based on the HiFi-945

GAN V1 configuration and is modified to support946

causal streaming synthesis. The total upsampling947

factor is 8× 5× 4× 2 = 320. The detailed config-948

uration is shown in Table 5.949

A.3 Spatial adaptor Architecture950

The spatial adaptor consists of two core submod-951

ules: the attention-based mel adaptor and the spa-952

tial position adaptor. Their configurations are sum-953

marized in Table 6.954

A.4 Discriminator Configuration955

We employ a combination of four discriminators to956

evaluate the generated audio from complementary957

perspectives. Table 7 summarizes their configura-958

tions.959

A.5 Training and Optimization960

Hyperparameters961

The training and optimization hyperparameters are962

listed in Table 8. We adopt a standard adversarial963

training setup with additional spectral and spatial964

losses.965

B Losses Design 966

B.1 Adversarial Objective (Ladv) 967

We adopt the Least-Squares GAN (LS-GAN) 968

for adversarial training. For each discrim- 969

inator Dk in the set {Dk}, the discrimina- 970

tor loss is Ladv(Dk, G) = Ey

[
(Dk(y) − 971

1)2
]
+Ez,c

[
Dk(G(z, c))2

]
, which encourages high 972

scores for real samples y and low scores for gener- 973

ated samples G(z, c). 974

The generator adversarial loss is Ladv(G,D) = 975∑
k Ez,c

[
(Dk(G(z, c))− 1)2

]
, which encourages 976

all discriminators to regard generated audio as real. 977

Since D comprises the MPD, MSD, MRD, and 978

SCD introduced above, the final adversarial objec- 979

tives are Ladv(G) =
∑

k Ladv(G;Dk),Ladv(D) = 980∑
k Ladv(Dk;G), which jointly enforce alignment 981

with real audio in temporal structure, multi-scale 982

patterns, spectral detail, and spatial consistency. 983

B.2 Feature Matching Loss (Lfm) 984

To stabilize GAN training and regularize 985

the generator toward the real data manifold, 986

we employ a feature matching loss. It acts 987

as a perceptual constraint based on learned 988

hierarchical representations: Lfm(G,D) = 989∑
k Ey,z,c

[∑Lk
i=1

1
Ni

∥∥D(i)
k (y)−D

(i)
k (G(z, c))

∥∥
1

]
, 990

where D
(i)
k is the i-th intermediate feature map 991

of discriminator Dk, Lk is the number of layers 992

considered, and Ni is the number of elements in 993

that feature map. 994

B.3 Auxiliary Perceptual and Reconstruction 995

Losses 996

These losses provide more direct, non-adversarial 997

gradient signals to the generator and optimize spe- 998

cific perceptual aspects of the synthesized audio. 999

To ensure that the spectral structure of the gener- 1000

ated audio matches that of real audio, we employ 1001

two spectral reconstruction losses. 1002

The first is the mel-spectrogram loss Lmel, 1003

which computes the L1 distance between the mel- 1004

spectrograms of the generated audio G(M,P) and 1005

the real audio y. This loss constrains the model on 1006

the perceptually important mel scale and is defined 1007

as 1008

Lmel(G) = Ey,M,P

[∥∥ϕ(y)− ϕ(G(M,P))
∥∥
1

]
,

(4) 1009

where ϕ denotes the transformation from the wave- 1010

form to its mel-spectrogram. 1011
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Layer / Block Output Channels Kernel Stride Upsample

Initial conv (conv_pre) 512 7 1 –

Upsampling block 1
Causal upsampling 256 16 8 ×8

MRF residual blocks 256 [3, 7, 11] – –

Upsampling block 2
Causal upsampling 128 10 5 ×5

MRF residual blocks 128 [3, 7, 11] – –

Upsampling block 3
Causal upsampling 64 8 4 ×4

MRF residual blocks 64 [3, 7, 11] – –

Upsampling block 4
Causal upsampling 32 4 2 ×2

MRF residual blocks 32 [3, 7, 11] – –

Final conv (conv_post) C 7 1 –

Table 5: Generator backbone configuration

Submodule Hyperparameter Value

Attention Mel adaptor

Input mel bins 128
Hidden channels 256
Conv kernel size 5
Number of attention heads 4

Spatial Position Adaptor

Input pose dimension 7
Fourier feature bands 8
Causal temporal encoder layers 3
Temporal encoder kernel size 3
Injection mechanism FiLM
Injection feature dimension 256

Table 6: Spatial adaptor configuration

The second is the multi-resolution STFT loss1012

LSTFT. This loss is computed under multiple short-1013

time Fourier transform (STFT) configurations, each1014

with different FFT sizes, window sizes, and hop1015

sizes. It consists of two components: the spectral1016

convergence loss Lsc, which penalizes differences1017

in spectral magnitude, and the log STFT magnitude1018

loss Lmag, which computes an L1 loss on the log-1019

magnitude spectrogram and better reflects human1020

perception of loudness. The total STFT loss is1021

defined as the average of these two components1022

across all STFT resolutions.1023

B.4 Spatial Loss Formulation1024

We provide the full formulation of the spatial loss1025

Lspatial, which explicitly supervises inter-channel1026

spatial cues beyond per-channel spectral similar-1027

ity. Its concrete form is defined in a format- 1028

adaptive way for binaural and First-Order Ambison- 1029

ics (FOA) signals. 1030

Binaural Spatial Loss. For binaural signals, we 1031

compute complex STFTs of the left and right chan- 1032

nels, SL(f, t) and SR(f, t), under multiple STFT 1033

configurations. The interaural phase difference 1034

(IPD) is given by ∆Φ(f, t) = argSL(f, t) − 1035

argSR(f, t). To avoid phase wrapping, we embed 1036

∆Φ into the complex plane and define 1037

uIPD(f, t) =
(
cos∆Φ(f, t), sin∆Φ(f, t)

)
∈ R2. 1038

The IPD loss compares the embedded representa- 1039

tions of the target and generated signals, 1040

LIPD =

∑
f,t wIPD(f)m(f,t)

∥∥upred
IPD (f,t)−uref

IPD(f,t)
∥∥2

2∑
f,t wIPD(f)m(f,t)+ε , 1041
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Discriminator Hyperparameter Value

MPD Periods [2, 3, 5, 7, 11, 13, 17, 19, 23, 37]

MSD Scales raw, ×2 pooling, ×4 pooling

MRD
Resolution 1 [1024, 120, 600]
Resolution 2 [2048, 240, 1200]
Resolution 3 [512, 50, 240]

Attentional SCD
Backbone type Axial attention
Number of axial attention blocks 2
Number of attention heads 4

Table 7: Discriminator configuration, MRD resolutions are specified as [FFT size, hop size, window size]

Hyperparameter Value

Optimizer Adam
Learning rate (G / D) 2× 10−4

Adam betas (β1, β2) (0.8, 0.99)
Learning rate decay γ 0.999
Batch size 16
Audio segment length 16,384 samples

Loss weights

Ladv (λadv) 1.0
Lfm (λfm) 2.0
Lmel (λmel) 45.0
LSTFT (λSTFT) 1.0
Lspatial (IPD/ILD) 0.1
Lspatial (FOA) 2.0

Table 8: Training and optimization hyperparameters

where wIPD(f) = exp
(
−(f/fIPD,max)

2
)

empha-1042

sizes low frequencies and m(f, t) is an energy-1043

based soft mask.1044

The interaural level difference (ILD) is defined1045

in the log-magnitude domain as1046

ILDref(f, t) = 20 log10 |Sref
L (f, t)| − 20 log10 |Sref

R (f, t)|,1047

and analogously for ILDpred. The ILD loss is1048

LILD =
∑

f,t wILD(f)m(f,t)
∣∣ILDpred(f,t)−ILDref(f,t)

∣∣∑
f,t wILD(f)m(f,t)+ε ,1049

with wILD(f) = 1−exp
(
−(f/fILD,min)

2
)

that em-1050

phasizes high frequencies.1051

The soft mask m(f, t) is derived from the frame-1052

wise energy of the reference signal. Let E(t) be the1053

RMS energy at frame t (averaged over frequency1054

and channels), and1055

EdB(t) = 10 log10(E(t) + ε).1056

We define a smooth frame-wise speech activity 1057

s(t) = σ

(
EdB(t)− µVAD

σVAD

)
, 1058

where σ(·) is the sigmoid function, µVAD is the soft- 1059

VAD center in dB, and σVAD controls the transition 1060

width. The time–frequency mask is then 1061

m(f, t) = mmin + (1−mmin) s(t), 1062

with mmin > 0 to avoid nullifying silent regions. 1063

The binaural spatial loss is 1064

Lbin
spatial = λIPDLIPD + λILDLILD. 1065

FOA Spatial Loss. For FOA signals, we assume 1066

a B-format ordering (W,X, Y, Z). Given target 1067

and predicted waveforms y, ŷ ∈ RB×4×T , we com- 1068

pute complex STFTs for each scale, obtaining 1069

W (f, t), X(f, t), Y (f, t), Z(f, t) 1070

for the reference and 1071

Ŵ (f, t), X̂(f, t), Ŷ (f, t), Ẑ(f, t) for the predic- 1072

tion. The total FOA energy at each time–frequency 1073

bin is 1074

Eref(f, t) = |W |2 + |X|2 + |Y |2 + |Z|2, 1075

Epred(f, t) = |Ŵ |2 + |X̂|2 + |Ŷ |2 + |Ẑ|2. 1076

Energy-weighted mask and frequency biases. We 1077

reuse the soft mask m(f, t) from the binaural case, 1078

now interpreted per FOA STFT configuration. To 1079

steer supervision across frequency, we define a low- 1080

frequency bias for direction-related terms, 1081

wdir(f) = exp
(
−(f/fiv,max)

2
)
, 1082

and a smooth mid–high-frequency bias for 1083

diffuseness-related terms. Let fs be the sampling 1084
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rate and f̃ = f/(fs/2) the normalized frequency.1085

We set1086

wdiff(f) =
1
2 + 1

2 tanh

(
f̃ − cdiff

wdiff

)
,1087

where cdiff controls the center of the transition and1088

wdiff controls its width.1089

We also apply mild energy exponents Eα to em-1090

phasize high-energy bins without dominating the1091

loss. We denote these exponents by αiv, αr, αdiff.1092

Intensity vector and directional term. The active1093

intensity components are computed as1094

I ref
X (f, t) = ℜ{W ∗(f, t)X(f, t)},1095

I ref
Y (f, t) = ℜ{W ∗(f, t)Y (f, t)},1096

I ref
Z (f, t) = ℜ{W ∗(f, t)Z(f, t)},1097

and analogously for Ipred
X , I

pred
Y , I

pred
Z . We collect1098

these into intensity vectors1099

Iref(f, t) = [I ref
X , I ref

Y , I ref
Z ]⊤,1100

Ipred(f, t) = [I
pred
X , I

pred
Y , I

pred
Z ]⊤.1101

The directional mismatch is measured via the co-1102

sine distance1103

div(f, t) = 1− Iref(f, t)⊤Ipred(f, t)

∥Iref(f, t)∥2 ∥Ipred(f, t)∥2 + ε
,1104

and we define1105

Liv_dir =
∑

f,t m(f,t)wdir(f)
(
Eref(f,t)

)αiv
div(f,t)∑

f,t m(f,t)wdir(f)
(
Eref(f,t)

)αiv
+ε

.1106

Normalized intensity ratio term. We normalize1107

the intensity by total energy,1108

rref(f, t) =
Iref(f, t)

Eref(f, t) + ε
,1109

rpred(f, t) =
Ipred(f, t)

Epred(f, t) + ε
,1110

and define1111

Lr =

∑
f,t m(f,t)wdir(f)

(
Eref(f,t)

)αr ∥∥rpred(f,t)−rref(f,t)
∥∥

1∑
f,t m(f,t)wdir(f)

(
Eref(f,t)

)αr
+ε

.1112

Diffuseness term. We compute the intensity1113

norm1114

∥Iref(f, t)∥2, ∥Ipred(f, t)∥2,1115

and define diffuseness as 1116

Dref(f, t) = 1− ∥Iref(f, t)∥2
Eref(f, t) + ε

, 1117

Dpred(f, t) = 1− ∥Ipred(f, t)∥2
Epred(f, t) + ε

. 1118

The diffuseness loss is then 1119

Ldiff =
∑

f,t m(f,t)wdiff(f)
(
Eref(f,t)

)αdiff
(
Dpred(f,t)−Dref(f,t)

)2
∑

f,t m(f,t)wdiff(f)
(
Eref(f,t)

)αdiff
+ε

. 1120

Log-energy term. Finally, we align the log- 1121

energy fields of reference and prediction: 1122

logEref(f, t) = log(Eref(f, t) + ε), 1123

logEpred(f, t) = log(Epred(f, t) + ε), 1124

and define 1125

Lelog =

∑
f,tm(f, t)wdiff(f)

∣∣logEpred(f, t)− logEref(f, t)
∣∣∑

f,tm(f, t)wdiff(f) + ε
1126

Multi-scale aggregation. In practice, all the 1127

above quantities are computed for multiple STFT 1128

parameter sets (nFFT, hop,win). The four FOA 1129

terms Liv_dir,Lr,Ldiff,Lelog are averaged over 1130

scales, and the final FOA spatial loss is 1131

LFOA
spatial = λivLiv_dir+λrLr+λdiffLdiff+λelogLelog. 1132

C Details of Datasets 1133

C.1 Recorded Binaural and FOA Data 1134

We use both binaural and first-order Ambisonics 1135

(FOA) spatial audio data for training and eval- 1136

uation. For the binaural branch, we adopt the 1137

MRSSpeech subset of the MRSAudio (Guo et al., 1138

2025) corpus together with the EasyCom (Don- 1139

ley et al., 2021) dataset, which contain extensive 1140

indoor recordings captured with binaural micro- 1141

phones. These corpora cover multiple speakers, 1142

diverse source-listener spatial configurations, and 1143

both Chinese and English speech, providing real- 1144

istic binaural characteristics and room acoustics. 1145

For FOA, we use the Spatial LibriSpeech (Sarabia 1146

et al., 2023) dataset, which is synthesized from Lib- 1147

riSpeech (Panayotov et al., 2015) and provides a 1148

large number of FOA-format spatial speech sam- 1149

ples with corresponding position annotations. How- 1150

ever, Spatial LibriSpeech only models azimuthal 1151

variation on the horizontal plane during spatial- 1152

ization and lacks diversity along the vertical di- 1153

mension (elevation). This may result in that most 1154

samples would show silence in the z channel, poten- 1155

tially causing the model to overfit spatial perception 1156

on the horizontal plane while lacking sensitivity to 1157

the vertical direction. 1158
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C.2 Simulated Spatial Data from1159

SoundSpaces (MP3D)1160

To enrich spatial diversity, especially in elevation1161

and in complex 3D room geometries, we addition-1162

ally generate a large amount of simulated spatial1163

data based on the SoundSpaces (Chen et al., 2022)1164

simulation framework and Habitat-Sim (Savva1165

et al., 2019). In this work we focus on indoor1166

scenes from the Matterport3D (MP3D) dataset; for1167

each MP3D environment we instantiate a Habitat-1168

Sim simulator and attach an audio sensor config-1169

ured either as binaural (2-channel) or FOA Am-1170

bisonics (4-channel) at a sampling rate of 48 kHz.1171

The listener (receiver) is placed at a height of 1.5 m1172

above the floor, and the audio materials configu-1173

ration from MP3D is loaded to enable frequency-1174

dependent reflection, absorption, and diffraction in1175

the propagation engine. We calculate the relative1176

pose between source and receiver, and use it as1177

conditioning input to the model.1178

C.3 Static BRIR/RIR Sampling and Position1179

Generation.1180

For the static subset, we randomly sample receiver1181

and source positions on the MP3D navigation mesh.1182

A candidate pair is accepted only if the horizontal1183

distance lies within (1, 10)m and the height differ-1184

ence is smaller than 2 m, which avoids degenerate1185

configurations (too close or too far, or across floors).1186

For each accepted pair we query the audio sensor1187

once and obtain a binaural or FOA room impulse1188

response (BRIR/RIR). All positions are initially1189

given in the Habitat/BAT coordinate convention,1190

where the horizontal plane is x-z, y points upwards,1191

and the agent faces the −z direction. For down-1192

stream usage we convert all 3D positions (x, y, z)1193

into a more conventional, listener-centric coordi-1194

nate system with the horizontal plane being x-y, z1195

pointing upwards, and the listener facing the +y1196

direction. All relative positions (source minus re-1197

ceiver) stored in our dataset are expressed in this1198

transformed coordinate system.1199

C.4 Dynamic Simulated Trajectories.1200

Besides the purely static BRIRs, we also construct1201

a dynamic subset in which the listener remains1202

fixed while the source moves through the envi-1203

ronment. Concretely, for a given receiver posi-1204

tion we randomly sample two source points that1205

are both within a reasonable distance from the1206

receiver and compute the shortest path between1207

them on the navigation mesh. The resulting 3D 1208

path is uniformly subsampled to a fixed number 1209

of time steps (e.g., 20 frames per trajectory). At 1210

each step we update the source position in Habitat- 1211

Sim, query a new BRIR from the audio sensor, and 1212

record the corresponding source position, relative 1213

position, and coarse direction labels (left/right, 1214

front/behind, above/below) derived from the 1215

transformed coordinate system. For each utterance 1216

we also generate a frame-level pose sequence at 1217

20 Hz by repeating the (static) relative position or 1218

by aligning it with the dynamic trajectory, yielding 1219

an N × 7 pose matrix per audio sample that is fully 1220

time-synchronized with the waveform. 1221

C.5 Convolution with Mono Speech and 1222

Post-processing. 1223

To turn the simulated BRIR/RIRs into training 1224

data, we convolve them with clean, single-channel 1225

speech from the LibriSpeech (Panayotov et al., 1226

2015) corpus. All LibriSpeech utterances are first 1227

resampled to 48kHz and converted to mono. For 1228

each utterance we randomly select one BRIR en- 1229

try, perform FFT-based convolution to obtain ei- 1230

ther 2-channel binaural or 4-channel FOA audio, 1231

and then truncate the result to match the original 1232

utterance length. We apply simple peak normaliza- 1233

tion (with a conservative safety margin) to avoid 1234

clipping and ensure that all simulated samples are 1235

loudness-consistent with the real-world data. 1236

C.6 Overall Dataset Scale 1237

Combining the real and simulated corpora, our 1238

final training and evaluation set comprises ap- 1239

proximately 600 hours of binaural data and 900 1240

hours of FOA data. Among them, around 1241

220k binaural samples and 70k FOA samples 1242

are synthesized by convolving LibriSpeech with 1243

SoundSpaces-generated BRIR/RIRs in MP3D envi- 1244

ronments, while the remaining samples come from 1245

MRSSpeech, EasyCom, and Spatial LibriSpeech. 1246

All audio is uniformly resampled to 48kHz, and 1247

all spatial annotations are provided in the unified 1248

listener-centric coordinate system. 1249

D FOA Results 1250

We present additional experimental results for FOA 1251

spatial audio synthesis. For FOA audio, we adopt 1252

similar evaluation metrics as for binaural audio, 1253

including audio quality metrics (PESQ, MRSTFT, 1254

MCD) and spatial consistency metrics (Corr_all 1255

and AUC_j_all). The spatial consistency metrics 1256
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Model Corr_all (↑) AUC_ j _all (↑) MRSTFT (↓) MCD (dB) (↓) PESQ (↑)

HiFi-GAN 18.65 61.98 1.278 4.052 2.122
CARGAN 15.99 61.20 1.257 3.690 1.757
FARGAN 16.26 61.28 1.154 2.941 1.794
WaveFM 14.37 60.80 0.846 1.950 3.520
Vocos 19.49 62.92 0.918 1.453 2.997

Ours 18.53 63.44 1.248 3.449 1.972

Table 9: FOA Results

are derived from the ViSAGe work (Kim et al.,1257

2025) and assess the ability of the generated au-1258

dio to preserve spatial cues. For audio quality, we1259

use common metrics such as PESQ, MRSTFT, and1260

MCD to measure the quality of the generated audio.1261

For the FOA format, we specifically evaluate the1262

audio quality of the W channel. Table 9 presents1263

a quantitative comparison of our method against1264

several baseline models on the FOA spatial audio1265

synthesis task. It can be observed that our method1266

outperforms others in spatial consistency metrics1267

(Corr_all and AUC_j_all), indicating better perfor-1268

mance in preserving spatial cues. Furthermore, our1269

method achieves audio quality metrics comparable1270

to non-causal models, demonstrating strong audio1271

synthesis capabilities.1272

E Latency Evaluation1273

This appendix details how we define and measure1274

latency for streaming inference, and reports repre-1275

sentative results under different chunk sizes.1276

E.1 Definitions1277

For streaming audio generation, we consider three1278

types of latency:1279

Algorithmic latency (Lalg, ms). This is the in-1280

herent delay introduced by the streaming design,1281

independent of hardware speed. Under chunked1282

inference, a system that outputs audio only after1283

receiving a full chunk has a lower bound1284

Lalg ≥ Tchunk + Tlookahead + Toverlap, (5)1285

where Tchunk is the chunk duration, Tlookahead is any1286

future-context requirement (0 for strictly causal de-1287

signs), and Toverlap accounts for cross-fade/overlap-1288

add schemes that require waiting for future samples.1289

For our model, Tlookahead = 0 and Toverlap = 0.1290

Compute latency (Lcomp, ms/chunk). This is1291

the wall-clock time to run the model for one chunk1292

(forward pass in streaming mode). We report dis- 1293

tributional statistics (p50/p90/p99) because tail la- 1294

tency is critical for real-time playback stability. 1295

Real-Time Factor (RTF). To normalize com- 1296

pute latency across chunk sizes, we report 1297

RTF =
Lcomp

Tchunk
. (6) 1298

RTF < 1 indicates faster-than-real-time inference. 1299

E.2 Chunking under sr = 48 kHz, hop=320 1300

With sampling rate sr = 48 kHz and hop size 320 1301

samples, the feature frame rate is 1302

f =
48000

320
= 150 frames/s, (7) 1303

Therefore, chunk sizes of 40/60/80/100 ms corre- 1304

spond to 6/9/12/15 mel frames, respectively. 1305

E.3 Measurement protocol 1306

We benchmark streaming inference with batch size 1307

1 and disable gradient computation. For GPU tim- 1308

ing, we synchronize before and after each forward 1309

pass to measure true kernel execution time. We 1310

perform a warm-up phase to avoid one-time com- 1311

pilation and cache effects, then run a fixed number 1312

of iterations and collect per-chunk latency sam- 1313

ples, from which we compute mean and percentiles 1314

(p50/p90/p99). 1315

E.4 Results and discussion 1316

Table 10 reports representative compute latency un- 1317

der different chunk sizes. Across repeated runs, 1318

the mean compute latency stays in a narrow band 1319

(approximately 15ms/chunk), while RTF improves 1320

as chunk size increases. This behavior is expected 1321

on GPUs when sequence lengths are short: fixed 1322

overheads (kernel launches, framework schedul- 1323

ing, memory movements) can dominate, and larger 1324

chunks may better utilize the GPU, reducing the 1325

per-frame cost even if ms/chunk is similar. Impor- 1326

tantly, all tested settings achieve RTF < 1, indicat- 1327

ing real-time feasibility with substantial headroom. 1328
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Chunk Mean p50 p90 p99 RTF

40 15.24± 0.95 14.99 16.44 18.62 0.3811
60 15.15± 1.35 14.80 16.70 19.34 0.2526
80 15.52± 2.06 14.71 17.71 24.67 0.1941
100 15.86± 2.40 15.46 18.14 24.81 0.1587

Table 10: Representative compute latency (ms/chunk)
for streaming inference at different chunk sizes under
sr = 48 kHz and hop=320. We report p50/p90/p99 and
RTF = Lcomp/Tchunk.

F Details of Experiments1329

F.1 Subjective evaluation1330

The subjective evaluation is conducted in a con-1331

trolled acoustic environment featuring sound-1332

attenuated conditions, precisely calibrated play-1333

back systems, and frequency-equalized headphones1334

to ensure consistency across listening sessions. A1335

total of 200 audio segments are randomly sampled1336

from the test dataset for evaluation purposes. We1337

recruit 29 participants to provide perceptual ratings1338

across two dimensions: audio quality and spatial1339

perception, using a 5-point Likert scale ranging1340

from 1 (Poor) to 5 (Excellent).1341

For audio quality assessment, we employ1342

the Mean Opinion Score for Quality (MOS-Q),1343

wherein participants utilize headphones to evaluate1344

the clarity and naturalness of the synthesized audio.1345

For spatial perception assessment, we adopt the1346

Mean Opinion Score for Spatialization (MOS-P),1347

where participants judge the authenticity of spatial1348

attributes, including the correspondence between1349

the perceived sound source localization (direction1350

and distance) and the textual prompt specifications.1351

All participants receive appropriate compensa-1352

tion at an hourly rate of $20, yielding a total ex-1353

perimental cost of approximately $1500. Prior to1354

participation, subjects are informed that their as-1355

sessments will be utilized exclusively for academic1356

research purposes. Detailed instructions provided1357

to participants for the audio evaluation protocol are1358

illustrated in Figure 4 and 5.1359

F.2 Objective evaluation1360

To ensure the reproducibility of our experiments,1361

we employ standard open-source implementations1362

for objective evaluation. The specific configura-1363

tions and libraries used are detailed below:1364

MRSTFT: We utilize the Multi-Resolution Short-1365

Time Fourier Transform (MRSTFT) implementa-1366

tion from Auraloss (Steinmetz and Reiss, 2020).1367

The metric is computed as the sum of spectral con- 1368

vergence and log-magnitude distance across multi- 1369

ple window sizes. 1370

https://github.com/csteinmetz1/auraloss 1371

PESQ: Perceptual Evaluation of Speech Quality 1372

(PESQ) is evaluated using the Wideband mode 1373

(ITU-T P.862.2). Since our model generates 48 1374

kHz audio, we downsample both the reference and 1375

synthesized signals to 16 kHz solely for this mea- 1376

surement using the python-pesq wrapper. 1377

https://github.com/ludlows/python-pesq 1378

MCD: We compute the Mel-Cepstral Distortion 1379

(MCD) to measure the spectral envelope difference. 1380

We use the mel-cepstral-distance library with 1381

Dynamic Time Warping (DTW) enabled to align 1382

the sequences before calculation. 1383

https://github.com/MattShannon/mcd 1384

Periodicity: To evaluate pitch accuracy and har- 1385

monic consistency, we calculate the periodicity er- 1386

ror using the pre-trained CREPE model provided 1387

in the CARGAN repository (Morrison et al., 2022). 1388

The metric represents the root mean squared error 1389

between the periodicity vectors of the ground truth 1390

and generated audio. 1391

https://github.com/descriptinc/cargan 1392

ANG COS & DIS COS: To quantify spatial 1393

fidelity, we utilize the pre-trained Spatial-AST 1394

model (Zheng et al., 2024) to extract high-level 1395

spatial representations. We report the metrics as 1396

ANG COS (for angular consistency) and DIS 1397

COS (for distance consistency), where higher 1398

cosine similarity indicates better preservation of 1399

perceptible spatial cues. 1400

https://github.com/zszheng147/ 1401

Spatial-AST 1402

RTF: Real-Time Factor (RTF) is calculated as the 1403

time required to generate the waveform divided by 1404

the duration of the audio on a single NVIDIA 4090 1405

GPU. 1406

G Licenses and Availability 1407

We respect the original licenses of all referenced ar- 1408

tifacts and do not redistribute them. This work uses 1409

publicly available datasets. We do not redistribute 1410

any third-party audio content. Users must obtain 1411

the original datasets from their respective providers 1412

and comply with the original licenses/terms of use. 1413

We will release only derived metadata (e.g., file 1414

lists, splits, and non-invertible statistics) under CC 1415
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Figure 4: This is a screenshot of our MOS-P test website

Figure 5: This is a screenshot of our MOS-Q test website

BY 4.0, subject to the original dataset terms. Our1416

codebase may depend on third-party libraries; these1417

components remain under their respective licenses.1418

Any external assets (e.g., pretrained backbones or1419

evaluation tools) are used in accordance with their1420

original licensing terms.1421

H Use of AI Assistants1422

We used AI-based writing assistant during1423

manuscript preparation solely for language polish-1424

ing, including grammar checking, spelling correc-1425

tion, and improving clarity and readability of the1426

text. All technical claims, experimental procedures,1427

and interpretations were produced and verified by1428

the authors.1429
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