

CSAVocoder: A Causal Spatial Audio Vocoder Towards Real-Time Spatial Audio Generation

Anonymous ACL submission

Abstract

Spatial audio vocoders aim to convert mel-spectrograms produced by generative models into spatial audio waveforms. Most existing vocoder research focuses on monaural audio, and direct extensions to spatial audio often degrade spatial quality by ignoring inter-channel cues. We present CSAVocoder, a causal GAN-based Spatial Audio Vocoder that jointly optimizes waveform fidelity and spatial rendering. Our framework introduces a spatial adaptor that fuses multi-channel mel-spectrograms with dynamic source-listener pose information, and a spatial consistency discriminator that explicitly supervises inter-channel spatial cues such as interaural level and phase differences. To meet real-time requirements, we design a strictly causal, stateful generator that supports efficient streaming inference with constant memory overhead. Experiments on large-scale spatial audio datasets demonstrate that CSAVocoder ensures audio quality and spatial fidelity while maintaining real-time performance. Our demo page is at: <https://csavocoder.github.io>.

1 Introduction

Unlike monaural audio, spatial audio renders sound sources at different directions and distances, providing a more immersive listening experience. It reconstructs a three-dimensional sound field and exploits the natural localization mechanisms of the human auditory system. By accurately modeling these cues, spatial audio delivers a strong sense of presence and realism in digital environments.

Spatial audio is increasingly important in applications such as virtual reality, augmented reality (Gupta et al., 2022; Kailas and Tiwari, 2021), and immersive gaming (Raghuvanshi and Snyder, 2018; Broderick et al., 2018; Yadegari et al., 2022). Recent generative models have made progress in spatial audio synthesis (Zhu et al., 2025; Lu et al., 2025), but many of them operate in the mel-spectrogram domain and rely on a vocoder to pro-

duce waveforms. Works such as ISDrama (Zhang et al., 2025a) and DualSpec (Zhao et al., 2025a) use pretrained HiFi-GAN-style vocoders and achieve high single-channel quality, yet they largely ignore inter-channel spatial consistency. Most vocoder studies still target single-channel audio, and direct extensions to spatial audio often degrade spatial quality because they ignore inter-channel cues so the necessity of relative pose between the sound source and the listener is a critical spatial factor in spatial audio rendering. Recent works (Heydari et al., 2025; Singh Kushwaha et al., 2024; Templin et al., 2025) use various forms of spatial information, including explicit coordinates and features extracted from visual inputs. The relative position controls loudness and spectral coloration, while orientation affects perceived direction and spatial awareness. Therefore, an effective spatial audio vocoder must explicitly model and exploit pose information to improve both signal quality and spatial perception.

On the other hand, real-time and efficiency requirements further complicate spatial audio rendering. In virtual and augmented reality, user interaction and rapid scene changes require spatial audio to react with low latency in order to maintain immersion. Prior work (Joy et al., 2024; Zhang et al., 2025a) emphasizes real-time rendering and the real-time factor (RTF). Since the vocoder is the final stage of spatial audio generation, its inference speed directly impacts end-to-end system latency and is crucial for real-time applications.

Designing a spatial audio vocoder that is both powerful and efficient is therefore challenging. The model must simultaneously (1) synthesize waveforms with high fidelity, (2) render perceptually valid spatial cues such as interaural level differences (ILD) and interaural phase differences (IPD), and (3) learn the complex mapping from pose to acoustic behavior, including source position and motion. In addition, the vocoder needs to be causal

084 and support low-latency streaming inference that
085 generates audio continuously in chunks.
086

087 To address these challenges, we propose CSAV-
088 ocoder. In summary, our contributions are:
089

090 • We design a GAN-based spatial audio vocoder
091 with a causal architecture that supports low-
092 latency streaming inference while maintaining
093 high-quality spatial audio synthesis.
094 • We introduce a pose-conditioning mechanism
095 using position adaptor that encodes the relative
096 source–listener pose and mel adaptor to capture
097 inter-channel relationships, improving spatial au-
098 dio rendering and perceptual quality.
099 • We propose an architecture that supports multiple
100 spatial audio formats and learns an end-to-end
mapping from multi-channel mel-spectrograms
to multi-channel spatial audio waveforms.

2 Related Work

101 Our work lies at the intersection of spatial audio
102 rendering, high-fidelity neural vocoders, and real-
103 time synthesis.

2.1 Spatial Audio Rendering

104 Spatial audio rendering aims to construct im-
105 mersive auditory scenes by modeling sound propa-
106 gation in three-dimensional space. Among existing
107 representations, binaural audio and First-Order Am-
108 bisonics (FOA) are particularly central. Binaural
109 audio directly models ear-canal signals via head-
110 related transfer functions (HRTFs) and is the final
111 perceptual format for headphone playback, while
112 FOA provides a spherical-harmonic, scene-centric
113 representation with rotational equivariance and is
114 widely used in VR and 360° video systems. These
115 two formats are therefore the primary targets of
116 many generative spatial audio models.

117 A broad line of work studies spatial audio gen-
118 eration from visual, textual, or multimodal inputs.
119 2.5D Visual Sound (Gao and Grauman, 2019) up-
120 mixes monophonic audio to binaural signals using
121 visual cues in a regression setting. More recent
122 methods move toward end-to-end spatial genera-
123 tion: ViSAGe (Kim et al., 2025) predicts FOA from
124 silent video, ISDrama (Zhang et al., 2025a) models
125 long-form spatial narratives with explicit real-time
126 constraints, Diff-SAGe (Singh Kushwaha et al.,
127 2024) applies diffusion in the complex spectral do-
128 main to better preserve inter-channel phase, and
129 BEWO (Sun et al., 2024) enables text-driven bin-
130 aural generation. ImmerseDiffusion (Heydari et al.,
131 2024) and In-the-Wild Audio Spatialization (Pan
132 et al., 2025) use spatial and semantic conditions
133 to synthesize FOA or binaural audio for complex
134 scenes.

135 Many of these systems operate primarily in the
136 spectral domain and rely on separate vocoders or
137 reconstruction stages, which introduce additional
138 latency. Spatial information is often injected im-
139 plicitly via latent variables or high-level prompts,
140 and only a few works, such as ISDrama and Im-
141 merseDiffusion, combine explicit spatial condition-
142 ing with considerations of real-time performance.
143 This places strong requirements on the spatial au-
144 dio vocoder at the end of the pipeline to generate
145 high quality spatial audio with precise spatial cues.

2.2 Neural Vocoder

146 Neural vocoders map acoustic features to wave-
147 forms and form the last stage of audio generation.
148 GAN-based vocoders dominate due to favorable
149 quality-efficiency trade-offs. HiFi-GAN (Kong
150 et al., 2020) introduces multi-period and multi-
151 scale discriminators; BigVGAN (Lee et al., 2022)
152 improves robustness via periodic activations and
153 anti-aliasing; FARGAN (Valin et al., 2024), CAR-
154 GAN (Morrison et al., 2022), and QGAN (Chaud-
155 hary and Abrol, 2024) reduce parameters and com-
156 puting complexity. MusicHifi (Zhu et al., 2024)
157 is an efficient high-fidelity stereophonic vocoder
158 which can be used to enhance the fidelity of a low-
159 resolution audio.

160 Alternative approaches operate in structured do-
161 mains. Vocos (Siuzdak, 2024) predicts complex
162 STFT coefficients; AF-Vocoder (Chen et al., 2025)
163 applies frequency-domain artifact filtering; Dis-
164 Coder (Lanzendorfer et al., 2025) generates in the
165 latent space of neural audio codecs. Diffusion
166 and flow-based vocoders such as DiffWave (Kong
167 et al., 2021), Fregrad (Nguyen et al., 2024), and
168 WaveFM (Luo et al., 2025) offer high perceptual
169 quality via iterative denoising or direct transport
170 learning. These existing vocoders primarily tar-
171 get monophonic or stereophonic audio and do not
172 explicitly model spatial cues, limiting their effec-
173 tiveness for spatial audio rendering.

2.3 Real-time Speech Synthesis

174 Real-time synthesis is critical for interactive ap-
175 plications where latency must stay below percep-
176 tual thresholds, favoring causal architectures and
177 streaming inference. Online voice conversion sys-
178 tems such as CONAN (Zhang et al., 2025b) use

183 chunk-wise state caching for bounded-delay conversion. For vocoders, WaveHax (Yoneyama et al.,
 184 2025b) and MS-WaveHax (Yoneyama et al., 2025a)
 185 adopt causal convolutions with shuffle-based up-
 186 sampling; DLL-APNet (Du et al., 2025) combines
 187 distillation and simplification; MelFlow (Welker
 188 et al., 2025) adapts flow models to causal mel-to-
 189 waveform mapping; BinauralFlow (Liang et al.,
 190 2025) demonstrates streamable binaural genera-
 191 tion. These advances motivate spatial vocoders that
 192 jointly achieve high spatial fidelity and streaming
 193 capability.

195 3 Method

196 3.1 Task Definition

197 We aim to synthesize a multi-channel spatial audio
 198 waveform $\mathbf{y} \in \mathbb{R}^{C \times L}$ from a multi-channel mel-
 199 spectrogram $\mathbf{M} \in \mathbb{R}^{C \times F \times T}$ and the corresponding
 200 spatial pose sequence $\mathbf{P} \in \mathbb{R}^{D_p \times T_p}$. Here, C de-
 201 notes the number of channels, L is the waveform
 202 length, F is the number of mel frequency bins, and
 203 T is the number of mel frames. The sequence \mathbf{P}
 204 captures the time-varying pose of the sound source
 205 relative to the listener, where D_p is the pose dimen-
 206 sion and T_p is the number of pose samples. Each
 207 pose vector consists of a 3D Cartesian position
 208 (x, y, z) and a 4D quaternion (q_w, q_x, q_y, q_z) that
 209 encodes orientation, so $D_p = 7$.

210 We formulate the problem as learning a condi-
 211 tional generative function G that maps the inputs
 212 to the target waveform:

$$213 \mathbf{y} = G(\mathbf{M}, \mathbf{P}; \theta), \quad (1)$$

214 where θ denotes the learnable parameters of the
 215 generator.

216 3.2 GAN-based Vocoder

217 Our framework is built on HiFi-GAN vocoder con-
 218 sisting of a generator G and a set of discriminators
 219 D , and extend its generator and discriminator stack
 220 to support spatial conditioning and strictly causal,
 221 streaming synthesis.

222 3.2.1 Generator

223 The generator follows the overall topology of HiFi-
 224 GAN which uses a convolutional network to upsample
 225 the input mel-spectrogram on temporal domain.

226 The Generator takes output from the Spatial Mel
 227 Adaptor and Spatial Position Adaptor as condi-
 228 tioning inputs. Tensors are fed into a series of

229 upsampling and residual blocks to gradually in-
 230 crease the temporal resolution to that of the target
 231 waveform. We replace standard transposed convo-
 232 lutions with our ShuffleUpsampleBlock. First, the
 233 CausalConv1d block projects the channels from
 234 C to $C_{\text{out}} \cdot s$, producing $\mathbf{X}' \in \mathbb{R}^{B \times (C_{\text{out}}s) \times T_{\text{in}}}$.
 235 Then a ShuffleBlock reshapes this tensor to $\mathbf{X}'' \in$
 $\mathbb{R}^{B \times C_{\text{out}} \times (T_{\text{in}}s)}$ by folding extra channels into the
 236 time dimension. Since pixel shuffle is a pure ten-
 237 sor reordering without temporal mixing, it pre-
 238 serves the causality of the preceding convolution
 239 and yields artifact-free causal upsampling.

240 The residual blocks forming the multi-receptive-
 241 field fusion (MRF) stack are modified in the same
 242 spirit. Each StreamingResBlock consists of several
 243 causal convolutions with different dilation rates to
 244 capture patterns at multiple temporal scales, and
 245 maintains an internal buffer whose length matches
 246 its effective left context.

248 3.2.2 Discriminator

249 Conventional Wave and Spectral Discriminators

250 To ensure high fidelity in both waveform and spec-
 251 tral domains, we adopt the standard MPD and MSD
 252 from HiFi-GAN (Kong et al., 2020) and MRD from
 253 BigVGAN (Lee et al., 2022) to ensure high-fidelity
 254 waveform and spectral reconstruction. Each sub-
 255 discriminator computes an STFT with a specific
 256 configuration, allowing the model to detect arti-
 257 facts that appear only at particular time-frequency
 258 resolutions.

259 Spatial Consistency Discriminator

260 To explicitly supervise spatial structure, we introduce a Spa-
 261 tial Consistency Discriminator (SCD) that operates
 262 on multi-channel log-mel spectrograms and pro-
 263 vides spatially informed adversarial gradients to the
 264 generator. Given a multi-channel waveform $\mathbf{y} \in$
 $\mathbb{R}^{B \times C \times T}$, the SCD computes $\mathbf{M} \in \mathbb{R}^{B \times C \times F \times T'}$
 265 and projects it via a 2D convolution into latent
 266 features $\mathbf{X} \in \mathbb{R}^{B \times d \times C \times T'}$. An axial-attention
 267 backbone then applies MHSA along the tempo-
 268 ral axis ($B \cdot C, T', d$) and along the channel axis
 $(B \cdot T', C, d)$, jointly modeling long-range dynam-
 269 ics and inter-channel relationships such as ILD/IPD
 270 in binaural signals and coherent patterns in FOA.
 271 A lightweight convolutional head finally maps the
 272 attended features to a scalar spatial consistency
 273 score per segment, complementing conventional
 274 discriminators that primarily target single-channel
 275 fidelity.

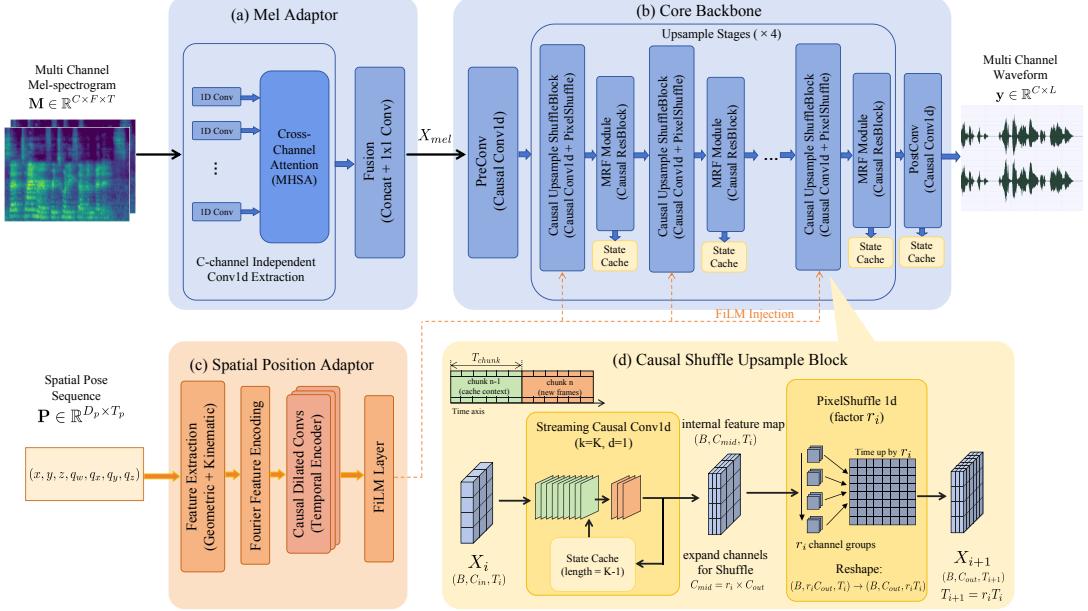


Figure 1: Overview of our model architecture.

3.2.3 Training Objectives

To train the generator G (the vector-field network v_θ) and the discriminator set D , we use a composite objective composed of several weighted loss terms. We adopt the standard Least-Squares GAN adversarial loss (\mathcal{L}_{adv}) (Mao et al., 2017), Feature Matching loss (\mathcal{L}_{fm}) (Kumar et al., 2019), and multi-resolution spectral reconstruction losses (\mathcal{L}_{mel} and $\mathcal{L}_{\text{STFT}}$) (Kong et al., 2020). The detailed formulations of these standard objectives are provided in Appendix B. Our primary contribution to the objective function is the format-aware Spatial Loss, designed to explicitly supervise spatial cues.

Spatial Loss Standard spectral losses treat channels independently, failing to constrain inter-channel spatial cues. We propose a format-aware spatial loss $\mathcal{L}_{\text{spatial}}$ that explicitly supervises physical attributes.

For Binaural Audio, based on the Duplex Theory, we combine Interaural Phase Difference (IPD) and Level Difference (ILD) losses: $\mathcal{L}_{\text{spatial}}^{\text{Bin}} = \lambda_{\text{IPD}} \mathcal{L}_{\text{IPD}} + \lambda_{\text{ILD}} \mathcal{L}_{\text{ILD}}$. Specifically, \mathcal{L}_{IPD} operates on multi-resolution STFTs and compares phase differences in a sine-cosine embedding to avoid wrapping, with supervision concentrated in the low-frequency region using a Gaussian weighting. Conversely, \mathcal{L}_{ILD} measures the discrepancy between log-magnitude level differences of the two ears, emphasizing high frequencies through a complementary weighting.

For FOA Audio, we define physical descriptors:

$\mathcal{L}_{\text{spatial}}^{\text{FOA}} = \lambda_{\text{iv}} \mathcal{L}_{\text{iv_dir}} + \lambda_{\text{r}} \mathcal{L}_{\text{r}} + \lambda_{\text{diff}} \mathcal{L}_{\text{diff}} + \lambda_{\text{elog}} \mathcal{L}_{\text{elog}}$. Direction-related terms ($\mathcal{L}_{\text{iv_dir}}$, \mathcal{L}_{r}) constrain the intensity vector’s angle and magnitude with a low-frequency bias, while diffusion-related terms ($\mathcal{L}_{\text{diff}}$, $\mathcal{L}_{\text{elog}}$) capture ambient envelopment with a mid-high-frequency bias.

To stabilize training, all terms are modulated by an energy-based soft mask derived from the ground-truth signal. Detailed formulations are in Appendix B.4.

Full Objective The total loss functions for the generator and the discriminators are defined as weighted sums of the components described above.

For each discriminator D_k in the discriminator set D , the total loss consists only of the adversarial term:

$$\mathcal{L}_D = \sum_k \mathcal{L}_{\text{adv}}(D_k; G). \quad (2)$$

For the generator G , the total loss is defined as

$$\mathcal{L}_G = \mathcal{L}_{\text{adv}}(G; D) + \lambda_{\text{fm}} \mathcal{L}_{\text{fm}} + \lambda_{\text{mel}} \mathcal{L}_{\text{mel}} + \lambda_{\text{STFT}} \mathcal{L}_{\text{STFT}} + \lambda_{\text{spatial}} \mathcal{L}_{\text{spatial}}, \quad (3)$$

where λ_{fm} , λ_{mel} , λ_{STFT} , and λ_{spatial} are hyperparameters that balance the contributions of different loss terms.

3.3 Causal Architecture for Streaming Synthesis

We redesign the HiFi-GAN generator as a fully causal, explicitly stateful architecture tailored for

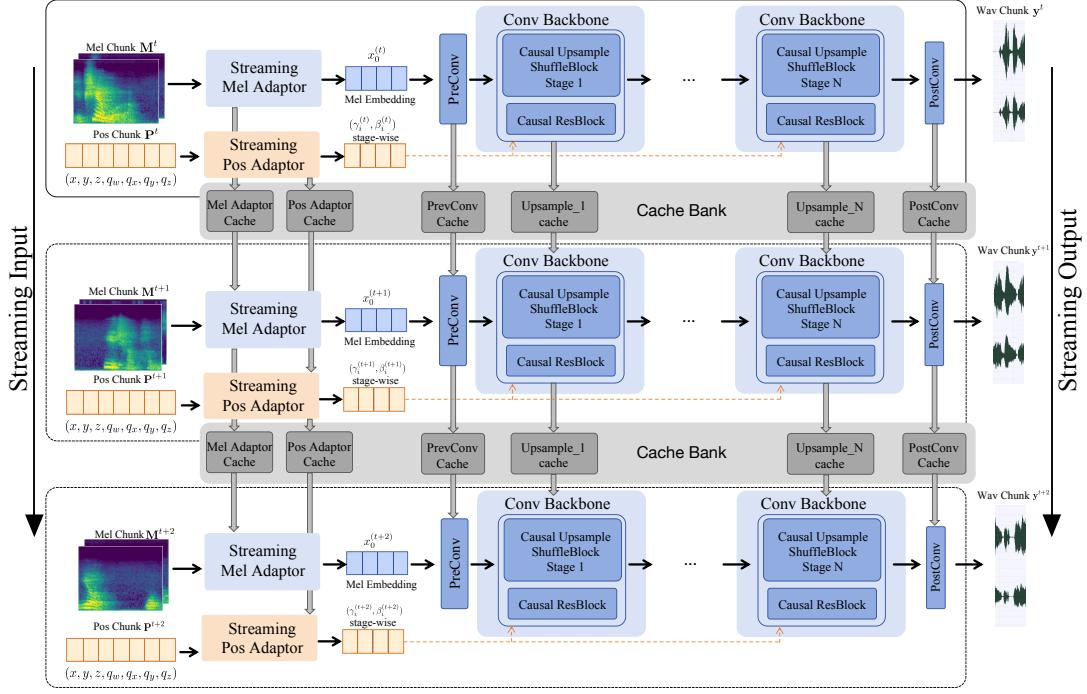


Figure 2: This figure shows the continuous streaming infer pipeline. Starting with multi-channel mel-spectrogram, we compute Mel Embedding and Pos information with Mel Adaptor and Position Adaptor. Then they are fed into the Conv Backbone and after upsampling and resblock, a chunk of wave is generated. All streaming blocks has its own state cache in the cache bank which restores a few chunk states before themselves and computes results strictly following causal restrictions.

streaming synthesis. All stages from mel features to waveform are constructed to satisfy strict causality, while a stateful inference mechanism avoids redundant computation in chunk-based processing.

Strict Causal Property When mapping a mel-spectrogram $M = \{m_1, \dots, m_T\}$ to waveform $W = \{w_1, \dots, w_{T'}\}$, strict causality requires that each output sample w_t depends only on input frames $\{m_1, \dots, m_i\}$ whose timestamps do not exceed that of w_t . Any dependency on future frames m_j with $j > i$ violates this constraint. Our design enforces this property at the operator level.

Stateful Streaming Inference. Causality alone is insufficient for efficient streaming, since naively concatenating long contextual prefixes for each chunk leads to substantial redundant computation. We therefore implement all context-dependent layers in a stateful form, where each layer accepts both the current input chunk and a compact cache from the previous step, and returns the current output together with an updated cache that stores exactly the left-context features needed for the next chunk. As shown in Figure 2, during streaming synthesis, the generator processes a sequence of mel chunks while propagating a global state object that aggre-

gates the caches of all stateful layers, avoiding any recomputation of past activations.

3.4 Spatial Adaptor

Standard mono-channel vocoders lack mechanisms to process multi-channel spectrograms or incorporate heterogeneous pose conditioning. To bridge this gap, we introduce the Spatial Adaptor, comprising two parallel modules to encode spectral and geometric cues respectively.

3.4.1 Attentional Mel Adaptor

This module fuses the multi-channel mel-spectrogram $M \in \mathbb{R}^{B \times C \times F \times T}$ into a unified single-stream representation $\mathbf{X}_{\text{mel}} \in \mathbb{R}^{B \times d_{\text{hifi}} \times T}$ while preserving implicit spatial cues (e.g., IPD/ILD). First, we apply a shared weight-normalized 1D convolution to each channel independently to extract local features $\mathbf{X}_{\text{feat}} \in \mathbb{R}^{B \times C \times d \times T}$. To capture nonlinear inter-channel dependencies, we then employ Multi-Head Self-Attention along the channel axis at each time step. Unlike fixed difference operations, this data-driven approach dynamically weights the contribution of each channel. Finally, the attended features are concatenated and projected via a 1×1 convolution to

336
337
338
339

340
341
342
343
344
345
346
347

348
349
350
351
352
353
354
355
356
357
358
359
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385 the backbone dimension d_{hifi} , serving as the unified
386 input to the generator.

387 3.4.2 Spatial Position Adaptor

388 This adaptor converts the raw pose sequence \mathbf{P} into
389 dense, physically meaningful conditioning \mathbf{X}_{pos} .

390 **Feature Extraction & Encoding:** From the 7D
391 raw pose, we derive Cartesian coordinates and for-
392 ward vectors (from quaternions), augmented with
393 first-order velocity differences to capture kinematic
394 motion. To mitigate the spectral bias of MLPs,
395 we map these scalars to high-dimensional sinu-
396 soidal representations using Fourier feature encod-
397 ing (Mildenhall et al., 2021), enabling sensitivity
398 to fine-grained spatial changes.

399 **Temporal Modeling & Injection:** The en-
400 coded features are processed by CausalPosEncoder
401 (stacked causal dilated convolutions) to model motion
402 trajectories. We inject this condition into
403 the generator via Feature-wise Linear Modulation
404 (FiLM). For each upsampling block, audio features
405 $\mathbf{x}_{\text{audio}}$ are modulated by scaling γ and bias β pro-
406 jected from the pose embeddings: $\text{FiLM}(\mathbf{x}_{\text{audio}}) =$
407 $(1 + \tanh(\gamma)) \cdot \mathbf{x}_{\text{audio}} + \beta$.

408 3.5 Unified Framework for Spatial Audio

409 Traditional vocoders are mono-centric or naïvely
410 replicate single-channel outputs, limiting their ap-
411 plicability to spatial audio. We design a channel-
412 free generator where the shared backbone performs
413 identical upsampling for any channel count: the
414 Attentional Mel Adaptor fuses a C -channel mel-
415 spectrogram into a fixed-dimensional representa-
416 tion, and the final projection layer outputs exactly
417 C waveform channels. For adversarial training,
418 we pair this flexible generator with channel-aware
419 discriminator heads specialized for each format.
420 At inference, a single checkpoint handles arbi-
421 trary supported formats by mapping the input mel-
422 spectrogram and its channel configuration directly
423 to spatial audio output. The design is naturally ex-
424 tensible: supporting new standards (e.g., 5.1 or 7.1
425 surround) requires only adding a format-specific
426 spatial loss and discriminator head, without modi-
427 fying the generator backbone.

428 4 Experiment

429 4.1 Experiment Details

430 **Dataset** We use both binaural and FOA formats
431 data. For binaural data, we adopt the MRSSpeech

432 subset of MRS Audio (Guo et al., 2025) and the
433 EasyCom (Donley et al., 2021) dataset. For
434 FOA data, we use the Spatial LibriSpeech (Sara-
435 bia et al., 2023) dataset, synthesized from Libri-
436 Speech (Panayotov et al., 2015), which offers
437 a large number of FOA samples with spatial anno-
438 tations. To increase spatial and acoustic diversity,
439 we further generate simulated data using the sound-
440 space toolkit. In total, our training corpus contains
441 roughly 600 hours of binaural data (about 350k
442 samples) and 900 hours of FOA data (about 310k
443 samples), all stored as 16-bit PCM at a sampling
444 rate of 48 kHz.

445 We preprocess EasyCom and MRSSpeech
446 datasets using the ClearVoice (Zhao et al., 2025b)
447 denoising algorithm to enhance audio quality. We
448 extract 700 random segments from all datasets as
449 test set, then split the remaining dataset into train-
450 ing/validation sets with a ratio of 9:1. The detailed
451 statistics are shown in appendix C.

452 **Baseline** We compare our proposed method with
453 several vocoder baselines. We choose original
454 HiFi-GAN (Kong et al., 2020), Vocos (Siuzdak,
455 2024) CARGAN (Morrison et al., 2022), FAR-
456 GAN (Valin et al., 2024) and WaveFM (Luo et al.,
457 2025) as our baselines. While recent works such
458 as MusicHiFi (Zhu et al., 2024) have explored spa-
459 tial audio vocoding, their implementations are not
460 publicly available. Since there is a lack of dedicated
461 spatial vocoder models for spatial audio generation,
462 we select the above-mentioned baselines, which
463 have demonstrated strong performance in monaural
464 audio generation tasks. We perform channel-wise
465 inference to generate binaural and FOA format au-
466 dio for comparison with our model.

467 **Metrics** Our evaluation protocol comprises both
468 subjective listening tests and objective metrics.

469 The objective evaluation addresses general audio
470 quality and spectral/temporal similarity as well as
471 spatial characteristics.

472 For waveform and spectral similarity we adopt
473 the metrics used in BinauralGrad(Leng et al., 2022)
474 MCD(Mel-cepstral distortion) to measure spectral
475 distortion, Periodicity to assess periodicity in the
476 audio. and MRSTFT, which combines spectral con-
477 vergence with log- and linear-magnitude terms to
478 improve spectral alignment. We also report PESQ
479 as a perceptual measure for speech-related quality
480 assessment. Except for PESQ, lower metric values
481 indicate better performance.

482 To quantify spatial fidelity, we introduce two

483 consistency measures ANG Cos and DIS Cos to re-
 484 spectively evaluate angular and distance similarity
 485 between generated and reference signals. Practi-
 486 cally, we extract angular and distance embeddings
 487 from binaural audio using Spatial-AST. Because
 488 Spatial-AST(Zheng et al., 2024) produces position
 489 estimates only for static sources, we partition each
 490 audio into 1-second segments, compute the cosine
 491 similarity between predicted and ground-truth em-
 492 beddings within each segment, and then average
 493 these segment-level similarities to obtain an overall
 494 spatial-consistency score. These metrics are report
 495 in percentage format.

496 we utilize subjective MOS-Q (Mean Opinion
 497 Score for Quality) to evaluate the quality of gener-
 498 ated audio and MOS-P (Mean Opinion Score for
 499 Position) to assess spatial perception. Implementa-
 500 tion details are in Appendix F.

501 4.2 Quantitative Comparison

502 We compare our model with existing vocoder
 503 baselines and present the metric results in Ta-
 504 ble 1. As shown in the table, our approach sig-
 505 nificantly outperforms all baselines on spatial met-
 506 rics while achieving competitive results on audio
 507 metrics. This demonstrates that explicitly model-
 508 ing inter-channel relationships through our Spatial
 509 Mel Adaptor and supervising spatial cues via the
 510 Spatial Consistency Discriminator are effective for
 511 preserving spatial information. For audio quality
 512 metrics, our model achieves qualitative reconstruc-
 513 tion results. Our PESQ score is lower than non-
 514 causal SOTA baselines such as Vocos and WaveFM,
 515 which we attribute to the strictly causal constraint
 516 as our causal convolutions can only access past
 517 context, whereas non-causal models leverage bi-
 518 directional receptive fields that benefit perceptual
 519 quality. More results on FOA are in Appendix D.

520 We report the Real-Time Factor (RTF) measured
 521 on a single NVIDIA RTX 4090 GPU. Our model
 522 achieves RTF = 0.1587, which is well below unity
 523 and confirms that our causal streaming architecture
 524 supports real-time generation. And detailed results
 525 of latency experiment are in Appendix E.

526 These results demonstrate that our model effec-
 527 tively bridges the gap between high-fidelity wave-
 528 form synthesis and accurate spatial rendering. The
 529 causal architecture introduces a minor quality trade-
 530 off compared to non-causal models, but this is an
 531 acceptable cost for enabling low-latency streaming
 532 applications.

4.3 Qualitative Comparison

533 We conduct a qualitative comparison of our pro-
 534 posed model with the baselines. We present the
 535 generated audio samples in Figure 3. The first row
 536 is the GT audio and the second is audio predicted by
 537 our model, followed by baseline predictions. Our
 538 causal model preserves the harmonic stacks and
 539 formant trajectories that closely match the ground
 540 truth on both channels, while maintaining consis-
 541 tent left-right spectral patterns. Compared with the
 542 baselines, our results exhibit sharper and more co-
 543 herent harmonic structures with fewer band-wise
 544 artifacts and a cleaner noise floor. Although our
 545 causal generation still shows slightly smoother tran-
 546 sients and mildly reduced high-frequency detail
 547 than non-causal counterparts, it achieves a highly
 548 similar overall spectral structure, indicating that
 549 high perceptual quality is attainable under causal
 550 constraints. We present more qualitative results in
 551 our demo page.

4.4 Subjective Evaluation

553 We conduct subjective listening tests to evaluate
 554 the quality and spatial perception of the generated
 555 audio.

556 We show the subjective evaluation result in Ta-
 557 ble 2. For spatial quality MOS-P test we ask lis-
 558 teners to rate how accurately they can perceive the
 559 position of the sound source in the generated au-
 560 dio compared to the ground truth position on a
 561 scale from 1 to 5. Our model achieves the highest
 562 MOS-P score among all models, indicating su-
 563 perior spatial perception. For audio quality MOS-Q
 564 test we ask listeners to rate the overall audio qual-
 565 ity of the generated samples on a scale from 1 to 5.
 566 Our model also achieves high MOS-Q score, but
 567 causal generating may be slightly inferior in audio
 568 quality compared to non-causal models as they are
 569 able to utilize future context.

Model	MOS-P	MOS-Q
HiFi-GAN	3.86 ± 0.19	3.98 ± 0.17
CARGAN	3.90 ± 0.18	4.03 ± 0.14
FARGAN	3.93 ± 0.14	4.07 ± 0.15
WaveFM	4.13 ± 0.13	4.17 ± 0.12
Vocos	4.09 ± 0.15	4.24 ± 0.11
Ours	4.25 ± 0.16	4.09 ± 0.21
GT	4.42 ± 0.11	4.41 ± 0.16

570 Table 2: Subjective Evaluation Results

Model	ANG COS (\uparrow)	DIS COS (\uparrow)	MRSTFT (\downarrow)	PESQ (\uparrow)	MCD (\downarrow)	Periodicity (\downarrow)	RTF (\downarrow)
HiFi-GAN	39.07	68.37	1.470	1.562	5.329	0.169	0.0622
CARGAN	30.00	63.71	1.194	1.739	3.377	0.160	0.1348
FARGAN	23.53	56.03	1.219	1.885	3.447	0.161	0.1916
WaveFM	41.36	71.96	1.079	2.400	2.727	0.141	0.1634
Vocos	40.04	70.23	1.039	2.510	1.892	0.113	0.0339
Ours	62.11	77.05	1.223	2.109	2.153	0.107	0.1587

Table 1: Quantitative Comparison

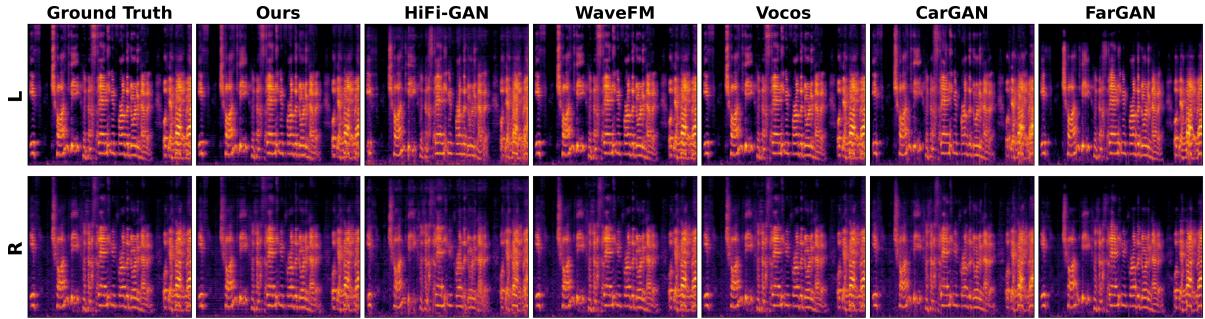


Figure 3: Qualitative comparison.

4.5 Ablation Study

We perform ablation studies of our proposed components and present the results in Table 3.

All proposed components contribute to the overall performance of our model. Removing Spatial Mel Adaptor causes significant drop in spatial metrics, as no inter-channel information is utilized. Using 4 attention heads in Spatial Mel Adaptor yields the best performance. However, removing the Position Adaptor results in moderate performance degradation, indicating that spatial information can still be partially captured through Spatial Mel Adaptor. The experiment shows that the Spatial Consistency Discriminator helps improve spatial metrics. But during our experiments, we find that only careful tuning of the weight of adversarial hyperparameters can lead to performance improvement, otherwise it may cause training instability.

5 Conclusion

We present CSAVocoder, a spatial audio vocoder that jointly addresses high-fidelity waveform synthesis and accurate spatial rendering. Our framework extends the GAN architecture with three key innovations: (1) a spatial adaptor that fuses multi-channel mel-spectrograms with dynamic pose information to capture inter-channel relationships, (2) a spatial consistency discriminator that explicitly

Setting	ANG COS (\uparrow)	DIS COS (\uparrow)
w/o Mel Adaptor	42.60	65.39
Mel Adaptor 2 head	61.03	76.55
Mel Adaptor 8 head	61.50	76.70
w/o SCD	58.82	74.63
w/o Position Adaptor	54.78	70.63
Mel Adaptor 4 head	62.11	77.05

Table 3: Ablation Study

supervises spatial cues, and (3) a strictly causal, stateful generator that enables efficient streaming inference with constant memory overhead.

Experimental results demonstrate that CSAVocoder outperforms existing channel-wise vocoders in spatial fidelity and synthesis well audio quality while maintaining real-time performance. The universal architecture supports multiple spatial audio formats without format-specific modifications, making it a practical solution for immersive audio applications such as virtual reality, augmented reality, and spatial communication.

We hope that the explicit modeling of spatial information and the causal streaming design provide a strong foundation for future work on real-time spatial audio generation.

591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

615 Limitations

616 Our work has three main limitations. First, es-
617 tablishing fair comparisons against causal base-
618 lines is challenging because different implemen-
619 tations adopt distinct buffering strategies and run-
620 time optimizations that affect both latency and qual-
621 ity. Many strong vocoders are optimized for of-
622 fline generation and benefit from non-causal con-
623 text or heavier post-processing; even when adapted
624 to streaming, their engineering choices can dom-
625 inate measured runtime. A standardized causal-
626 baseline suite with matched end-to-end latency bud-
627 getts and consistent objective measurements is left
628 for future work. Second, we focus on binaural
629 and FOA formats; extending to higher-order am-
630 bisonics (HOA), multichannel loudspeaker layouts
631 (e.g., 5.1/7.1), object-based audio, and personalized
632 HRTF rendering is non-trivial. Increasing channel
633 counts changes the required inductive bias, stabil-
634 ity of adversarial training, and computational cost,
635 and different ambisonic conventions may introduce
636 dataset mismatches. Third, we condition on pose
637 (position and orientation), but alternative or com-
638 plementary representations may be more robust or
639 expressive, such as relative geometry features (dis-
640 tance/azimuth/elevation), scene-aware embeddings
641 from visual or 3D context, or learned spatial tokens
642 that summarize multi-source environments. We do
643 not exhaustively explore these design axes.

644 Ethical Considerations

645 This paper presents CSAVocoder, a causal and state-
646 ful vocoder for low-latency spatial audio generation
647 conditioned on acoustic features. While the model
648 does not generate linguistic content on its own, it
649 can be integrated into upstream TTS/VC systems;
650 therefore, both model- and data-related risks must
651 be considered.

652 **Data provenance, licensing, and privacy.** We
653 rely on publicly available speech/spatial-audio cor-
654 pora and simulation pipelines. We do not claim
655 ownership of any third-party audio content and rec-
656 commend that any release avoid redistributing raw
657 audio unless explicitly permitted by original licens-
658 es/terms. Derived artifacts such as file lists, splits,
659 and evaluation scripts should be shared in a way
660 that enables reproducibility while reducing privacy
661 exposure. Speech datasets may contain personally
662 identifying information or sensitive attributes.

663 Risks from real-time generation and speech pri- 664 vacy.

665 Low-latency speech generation can enable
666 near-real-time impersonation, “live” spoofing in
667 voice authentication, and the re-synthesis of inter-
668 cepted private conversations. Spatial audio further
669 increases realism and may strengthen deceptive sce-
670 narios. In addition, pose conditioning introduces
671 an auxiliary privacy surface: logged 3D trajec-
672 tories and orientations can reveal behavioral patterns,
673 attention, or activity context in immersive systems.

673 **Potential harmful applications.** Beyond deep-
674 fakes, potential misuse includes covert surveillance,
675 harassment, social engineering, or generating mis-
676 leading evidence. Dataset misuse may include
677 training downstream models for speaker identifica-
678 tion, demographic profiling, or other applications
679 that participants did not consent to, especially when
680 data is repurposed outside its original scope.

681 **Mitigations and responsible release.** We recom-
682 mend (i) clear acceptable-use terms and licenses;
683 (ii) optional watermarking/provenance signals and
684 guidance for detection; (iii) restricting and docu-
685 menting deployment contexts; (iv) minimizing re-
686 tention of raw audio, intermediate representations,
687 and pose logs; and (v) reporting limitations and
688 failure modes. For listening tests, risks are minimal
689 but include fatigue; conservative volume, breaks,
690 and withdrawal options are advised.

691 **Bias and environmental impact.** Training data
692 and simulators may under-represent languages, ac-
693 cents, acoustic environments, and accessibility-
694 related speech characteristics, leading to uneven
695 performance. Finally, while causal inference can
696 reduce runtime cost, training remains compute-
697 intensive; we encourage transparent reporting of
698 compute and settings to support reproducibility and
699 responsible scaling.

700 References

701 James Broderick, Jim Duggan, and Sam Redfern. 2018.
702 The importance of spatial audio in modern games
703 and virtual environments. In *2018 IEEE games, enter-
704 tainment, media conference (GEM)*, pages 1–9.
705 IEEE.

706 Aryan Chaudhary and Vinayak Abrol. 2024. **QGAN:**
707 **Low Footprint Quaternion Neural Vocoder for**
708 **Speech Synthesis.** In *Interspeech 2024*, pages 3874–
709 3878.

710 Changan Chen, Carl Schissler, Sanchit Garg, Philip
711 Kobernik, Alexander Clegg, Paul Calamia, Dhruv

712	Batra, Philip Robinson, and Kristen Grauman. 2022.	766
713	Soundspaces 2.0: A simulation platform for visual-acoustic learning. In <i>Advances in Neural Information Processing Systems</i> , volume 35, pages 8896–8911.	767
714	Curran Associates, Inc.	768
715		769
716		770
717	Zhuangqi Chen, Xianjun Xia, Xiaohuai Le, Siyu Sun, and Chuanzeng Huang. 2025.	771
718	AF-Vocoder: Artifact-Free Neural Vocoder with Global Artifact Filter. In <i>Interspeech 2025</i> , pages 4903–4907.	772
719		773
720		774
721	Jacob Donley, Vladimir Tourbabin, Jung-Suk Lee, Mark Broyles, Hao Jiang, Jie Shen, Maja Pantic, Vamsi Krishna Ithapu, and Ravish Mehra. 2021.	775
722	Easycom: An augmented reality dataset to support algorithms for easy communication in noisy environments. <i>arXiv preprint arXiv:2107.04174</i> .	776
723		777
724		778
725		779
726		780
727	Hui-Peng Du, Yang Ai, and Zhen-Hua Ling. 2025.	781
728	A distilled low-latency neural vocoder with explicit amplitude and phase prediction. <i>Preprint, arXiv:2509.13667</i> .	782
729		783
730		784
731	Ruohan Gao and Kristen Grauman. 2019.	785
732	2.5d visual sound. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)</i> .	786
733		
734		
735	Wenxiang Guo, Changhao Pan, Zhiyuan Zhu, Xintong Hu, Yu Zhang, Li Tang, Rui Yang, Han Wang, Zong-bao Zhang, Yuhan Wang, and 1 others. 2025.	791
736	Mr-saudio: A large-scale multimodal recorded spatial audio dataset with refined annotations. <i>arXiv preprint arXiv:2510.10396</i> .	792
737		793
738		794
739		795
740		796
741	Rishabh Gupta, Jianjun He, Rishabh Ranjan, Woon-Seng Gan, Florian Klein, Christian Schneiderwind, Annika Neidhardt, Karlheinz Brandenburg, and Vesa Välimäki. 2022.	797
742	Augmented/mixed reality audio for hearables: Sensing, control, and rendering. <i>IEEE Signal Processing Magazine</i> , 39(3):63–89.	798
743		799
744		800
745		801
746		802
747	Mojtaba Heydari, Mehrez Souden, Bruno Conejo, and Joshua Atkins. 2025.	803
748	Immersediffusion: A generative spatial audio latent diffusion model. In <i>ICASSP</i> .	804
749		
750	Dhanush Joy, S Kiran, Alan Ponnachan, R Ashok, and M Nikhil. 2024.	805
751	Real-time implementation of spatial audio on fpga using interaural time difference and amplitude-driven perceptual depth. In <i>2024 First International Conference on Electronics, Communication and Signal Processing (ICECSP)</i> , pages 1–6.	806
752	IEEE.	807
753		808
754		809
755		
756		
757	Ganesh Kailas and Nachiketa Tiwari. 2021.	810
758	Design for immersive experience: Role of spatial audio in extended reality applications. In <i>Design for Tomorrow—Volume 2: Proceedings of ICoRD 2021</i> , pages 853–863.	811
759	Springer.	812
760		
761		
762	Jaeyeon Kim, Heeseung Yun, and Gunhee Kim. 2025.	813
763	Visage: Video-to-spatial audio generation. In <i>The Thirteenth International Conference on Learning Representations</i> .	814
764		815
765		816
766		817
767	Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020.	818
768	Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis. <i>Advances in neural information processing systems</i> , 33:17022–17033.	819
769		820
770		821
771	Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. 2021.	772
772	Diffwave: A versatile diffusion model for audio synthesis. <i>Preprint, arXiv:2009.09761</i> .	773
773		774
774	Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	775
775	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	776
776		777
777		778
778		779
779		780
780	Kuandu Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	781
781	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	782
782		783
783		784
784		785
785		786
786	Kuandu Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	787
787	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	788
788		789
789		790
790	Kuandu Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	791
791	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	792
792		793
793		794
794		795
795		796
796		797
797	Kuandu Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	798
798	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	799
799		800
800		801
801		802
802		803
803		804
804	Kuandu Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	805
805	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	806
806		807
807		808
808		809
809	Kuandu Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	810
810	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	811
811		812
812	Kuandu Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	813
813	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	814
814		815
815		816
816		817
817	Kuandu Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	818
818	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	819
819		820
820		821
821		822
822	Kuandu Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, and Aaron Courville. 2019.	823
823	Melgan: Generative adversarial networks for conditional waveform synthesis. <i>Preprint, arXiv:1910.06711</i> .	824
824		825
825		826
826		827
827		828
828		829
829		830
830		831
831		832
832		833
833		834
834		835
835		836
836		837
837		838
838		839
839		840
840		841
841		842
842		843
843		844
844		845
845		846
846		847
847		848
848		849
849		850
850		851
851		852
852		853
853		854
854		855
855		856
856		857
857		858
858		859
859		860
860		861
861		862
862		863
863		864
864		865
865		866
866		867
867		868
868		869
869		870
870		871
871		872
872		873
873		874
874		875
875		876
876		877
877		878
878		879
879		880
880		881
881		882
882		883
883		884
884		885
885		886
886		887
887		888
888		889
889		890
890		891
891		892
892		893
893		894
894		895
895		896
896		897
897		898
898		899
899		900
900		901
901		902
902		903
903		904
904		905
905		906
906		907
907		908
908		909
909		910
910		911
911		912
912		913
913		914
914		915
915		916
916		917
917		918
918		919
919		920
920		921
921		922
922		923
923		924
924		925
925		926
926		927
927		928
928		929
929		930
930		931
931		932
932		933
933		934
934		935
935		936
936		937
937		938
938		939
939		940
940		941
941		942
942		943
943		944
944		945
945		946
946		947
947		948
948		949
949		950
950		951
951		952
952		953
953		954
954		955
955		956
956		957
957		958
958		959
959		960
960		961
961		962
962		963
963		964
964		965
965		966
966		967
967		968
968		969
969		970
970		971
971		972
972		973
973		974
974		975
975		976
976		977
977		978
978		979
979		980
980		981
981		982
982		983
983		984
984		985
985		986
986		987
987		988
988		989
989		990
990		991
991		992
992		993
993		994
994		995
995		996
996		997
997		998
998		999
999		999

823	Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron Courville, and Yoshua Bengio. 2022. Chunked autoregressive gan for conditional waveform synthesis. In <i>Submitted to ICLR 2022</i> .	880
824		881
825		882
826		883
827	Tan Dat Nguyen, Ji-Hoon Kim, Youngjoon Jang, Jaehun Kim, and Joon Son Chung. 2024. Fre-grad: Lightweight and fast frequency-aware diffusion vocoder . In <i>ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</i> , pages 10736–10740.	884
828		885
829		886
830		887
831		888
832		889
833	Tianrui Pan, Jie Liu, Zewen Huang, Jie Tang, and Gangshan Wu. 2025. In-the-wild audio spatialization with flexible text-guided localization . In <i>Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</i> , pages 1989–2001, Vienna, Austria. Association for Computational Linguistics.	890
834		891
835		892
836		893
837		894
838		895
839		
840	Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015. Librispeech: an asr corpus based on public domain audio books. In <i>2015 IEEE international conference on acoustics, speech and signal processing (ICASSP)</i> , pages 5206–5210. IEEE.	896
841		897
842		898
843		899
844		900
845		901
846	Nikunj Raghuvanshi and John Snyder. 2018. Parametric directional coding for precomputed sound propagation. <i>ACM Transactions on Graphics (TOG)</i> , 37(4):1–14.	902
847		903
848		904
849		905
850	Miguel Sarabia, Elena Menyaylenko, Alessandro Toso, Skyler Seto, Zakaria Aldeneh, Shadi Pirhosseinloo, Luca Zappella, Barry-John Theobald, Nicholas Apostoloff, and Jonathan Sheaffer. 2023. Spatial librispeech: An augmented dataset for spatial audio learning. <i>arXiv preprint arXiv:2308.09514</i> .	906
851		907
852		
853		
854		
855		
856	Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. 2019. Habitat: A platform for embodied ai research. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)</i> .	912
857		913
858		914
859		
860		
861		
862		
863	Saksham Singh Kushwaha, Jianbo Ma, Mark R. P. Thomas, Yapeng Tian, and Avery Bruni. 2024. Diff-SAGe: End-to-End Spatial Audio Generation Using Diffusion Models . <i>arXiv e-prints</i> , arXiv:2410.11299.	915
864		916
865		917
866		918
867	Hubert Siuzdak. 2024. Vocos: Closing the gap between time-domain and fourier-based neural vocoders for high-quality audio synthesis . <i>Preprint</i> , arXiv:2306.00814.	919
868		920
869		921
870		922
871	Christian J. Steinmetz and Joshua D. Reiss. 2020. auraloss: Audio focused loss functions in PyTorch . In <i>Digital Music Research Network One-day Workshop (DMRN+15)</i> .	923
872		924
873		925
874		926
875	Peiwen Sun, Sitong Cheng, Xiangtai Li, Zhen Ye, Huadai Liu, Honggang Zhang, Wei Xue, and Yike Guo. 2024. Both ears wide open: Towards language-driven spatial audio generation . <i>arXiv preprint arXiv:2410.10676</i> .	927
876		928
877		929
878		
879		
880	Christian Templin, Yanda Zhu, and Hao Wang. 2025. Sonicmotion: Dynamic spatial audio soundscapes with latent diffusion models . <i>arXiv preprint arXiv:2507.07318</i> .	930
881		931
882		932
883		933
884	Jean-Marc Valin, Ahmed Mustafa, and Jan Büthe. 2024. Very low complexity speech synthesis using frame-wise autoregressive gan (fargan) with pitch prediction . <i>IEEE Signal Processing Letters</i> , 31:2115–2119.	885
885		886
886		887
887	Simon Welker, Tal Peer, and Timo Gerkmann. 2025. Real-time streaming mel vocoding with generative flow matching . <i>Preprint</i> , arXiv:2509.15085.	888
888		889
889		890
890	Shahrokh Yadegari, John Burnett, Grady Kestler, and Louis Pisha. 2022. Spatial audio and sound design in the context of games and multimedia . In <i>Encyclopedia of Computer Graphics and Games</i> , pages 1–7. Springer.	891
891		892
892		893
893		894
894		895
895	Reo Yoneyama, Masaya Kawamura, Ryo Terashima, Ryuichi Yamamoto, and Tomoki Toda. 2025a. Comparative analysis of fast and high-fidelity neural vocoders for low-latency streaming synthesis in resource-constrained environments . <i>Preprint</i> , arXiv:2506.03554.	896
896		897
897		898
898		899
899		900
900		901
901	Reo Yoneyama, Atsushi Miyashita, Ryuichi Yamamoto, and Tomoki Toda. 2025b. Wavehax: Aliasing-free neural waveform synthesis based on 2d convolution and harmonic prior for reliable complex spectrogram estimation . <i>IEEE Transactions on Audio, Speech and Language Processing</i> , 33:4454–4470.	902
902		903
903		904
904		905
905		906
906		907
907	Yu Zhang, Wenxiang Guo, Changhao Pan, Zhiyuan Zhu, Tao Jin, and Zhou Zhao. 2025a. Isdrama: Immersive spatial drama generation through multimodal prompting . <i>arXiv preprint arXiv:2504.20630</i> .	908
908		909
909		910
910		911
911	Yu Zhang, Baotong Tian, and Zhiyao Duan. 2025b. Conan: A chunkwise online network for zero-shot adaptive voice conversion . <i>Preprint</i> , arXiv:2507.14534.	912
912		913
913		914
914	Lei Zhao, Sizhou Chen, Linfeng Feng, Xiao-Lei Zhang, and Xuelong Li. 2025a. Dualspec: Text-to-spatial-audio generation via dual-spectrogram guided diffusion model . <i>arXiv preprint arXiv:2502.18952</i> .	915
915		916
916		917
917		918
918	Shengkui Zhao, Zexu Pan, and Bin Ma. 2025b. Clearervoice-studio: Bridging advanced speech processing research and practical deployment . <i>arXiv preprint arXiv:2506.19398</i> .	919
919		920
920		921
921		922
922	Zhisheng Zheng, Puyuan Peng, Ziyang Ma, Xie Chen, Eunsol Choi, and David Harwath. 2024. Bat: Learning to reason about spatial sounds with large language models . <i>arXiv preprint arXiv:2402.01591</i> .	923
923		924
924		925
925		926
926	Ge Zhu, Juan-Pablo Caceres, Zhiyao Duan, and Nicholas J Bryan. 2024. Musichifi: Fast high-fidelity stereo vocoding . <i>IEEE Signal Processing Letters</i> .	927
927		928
928		929
929	Zhiyuan Zhu, Yu Zhang, Wenxiang Guo, Changhao Pan, and Zhou Zhao. 2025. Asaudio: A survey of advanced spatial audio research . <i>arXiv preprint arXiv:2508.10924</i> .	930
930		931
931		932
932		933

934 A Implementation Details

935 This appendix provides the detailed hyperparameters
 936 and architectural configurations used in our
 937 experiments.

938 A.1 Audio and Spectrogram Parameters

939 All audio processing and mel-spectrogram extraction
 940 are conducted using the parameters listed in
 941 Table 4. The overall upsampling factor of the
 942 generator is set to 320 to match the hop size used in
 943 mel-spectrogram extraction.

Table 4: Audio processing and mel-spectrogram extraction parameters

Parameter	Value
Sample rate	48,000 Hz
FFT size	1024
Hop size	320
Window size	1024
Number of mel bins	128
Mel f_{\min}	20 Hz
Mel f_{\max}	24,000 Hz

944 A.2 Generator Architecture

945 The generator backbone G is based on the HiFi-
 946 GAN V1 configuration and is modified to support
 947 causal streaming synthesis. The total upsampling
 948 factor is $8 \times 5 \times 4 \times 2 = 320$. The detailed config-
 949 uration is shown in Table 5.

950 A.3 Spatial adaptor Architecture

951 The spatial adaptor consists of two core submod-
 952 ules: the attention-based mel adaptor and the
 953 spatial position adaptor. Their configurations are
 954 summarized in Table 6.

955 A.4 Discriminator Configuration

956 We employ a combination of four discriminators to
 957 evaluate the generated audio from complementary
 958 perspectives. Table 7 summarizes their configura-
 959 tions.

960 A.5 Training and Optimization 961 Hyperparameters

962 The training and optimization hyperparameters are
 963 listed in Table 8. We adopt a standard adversarial
 964 training setup with additional spectral and spatial
 965 losses.

966 B Losses Design

967 B.1 Adversarial Objective (\mathcal{L}_{adv})

968 We adopt the Least-Squares GAN (LS-GAN)
 969 for adversarial training. For each discrimi-
 970 nator D_k in the set $\{D_k\}$, the discrimina-
 971 tor loss is $\mathcal{L}_{\text{adv}}(D_k, G) = \mathbb{E}_{\mathbf{y}}[(D_k(\mathbf{y}) - 1)^2] + \mathbb{E}_{\mathbf{z}, \mathbf{c}}[D_k(G(\mathbf{z}, \mathbf{c}))^2]$, which encourages high
 972 scores for real samples \mathbf{y} and low scores for generated
 973 samples $G(\mathbf{z}, \mathbf{c})$.

974 The generator adversarial loss is $\mathcal{L}_{\text{adv}}(G, D) = \sum_k \mathbb{E}_{\mathbf{z}, \mathbf{c}}[(D_k(G(\mathbf{z}, \mathbf{c})) - 1)^2]$, which encourages
 975 all discriminators to regard generated audio as real.

976 Since D comprises the MPD, MSD, MRD, and
 977 SCD introduced above, the final adversarial objectives
 978 are $\mathcal{L}_{\text{adv}}(G) = \sum_k \mathcal{L}_{\text{adv}}(G; D_k)$, $\mathcal{L}_{\text{adv}}(D) = \sum_k \mathcal{L}_{\text{adv}}(D_k; G)$, which jointly enforce alignment
 979 with real audio in temporal structure, multi-scale
 980 patterns, spectral detail, and spatial consistency.

981 B.2 Feature Matching Loss (\mathcal{L}_{fm})

982 To stabilize GAN training and regularize
 983 the generator toward the real data manifold,
 984 we employ a feature matching loss. It acts
 985 as a perceptual constraint based on learned
 986 hierarchical representations: $\mathcal{L}_{\text{fm}}(G, D) = \sum_k \mathbb{E}_{\mathbf{y}, \mathbf{z}, \mathbf{c}} \left[\sum_{i=1}^{L_k} \frac{1}{N_i} \|D_k^{(i)}(\mathbf{y}) - D_k^{(i)}(G(\mathbf{z}, \mathbf{c}))\|_1 \right]$,
 987 where $D_k^{(i)}$ is the i -th intermediate feature map
 988 of discriminator D_k , L_k is the number of layers
 989 considered, and N_i is the number of elements in
 990 that feature map.

991 B.3 Auxiliary Perceptual and Reconstruction 992 Losses

993 These losses provide more direct, non-adversarial
 994 gradient signals to the generator and optimize spe-
 995 cific perceptual aspects of the synthesized audio.

996 To ensure that the spectral structure of the gener-
 997 ated audio matches that of real audio, we employ
 998 two spectral reconstruction losses.

999 The first is the mel-spectrogram loss \mathcal{L}_{mel} ,
 1000 which computes the L1 distance between the mel-
 1001 spectrograms of the generated audio $G(\mathbf{M}, \mathbf{P})$ and
 1002 the real audio \mathbf{y} . This loss constrains the model on
 1003 the perceptually important mel scale and is defined
 1004 as

$$\mathcal{L}_{\text{mel}}(G) = \mathbb{E}_{\mathbf{y}, \mathbf{M}, \mathbf{P}} [\|\phi(\mathbf{y}) - \phi(G(\mathbf{M}, \mathbf{P}))\|_1], \quad (4)$$

1005 where ϕ denotes the transformation from the wave-
 1006 form to its mel-spectrogram.

Layer / Block	Output Channels	Kernel	Stride	Upsample
Initial conv (conv_pre)	512	7	1	–
Upsampling block 1				
Causal upsampling	256	16	8	$\times 8$
MRF residual blocks	256	[3, 7, 11]	–	–
Upsampling block 2				
Causal upsampling	128	10	5	$\times 5$
MRF residual blocks	128	[3, 7, 11]	–	–
Upsampling block 3				
Causal upsampling	64	8	4	$\times 4$
MRF residual blocks	64	[3, 7, 11]	–	–
Upsampling block 4				
Causal upsampling	32	4	2	$\times 2$
MRF residual blocks	32	[3, 7, 11]	–	–
Final conv (conv_post)	C	7	1	–

Table 5: Generator backbone configuration

Submodule	Hyperparameter	Value
Attention Mel adaptor	Input mel bins	128
	Hidden channels	256
	Conv kernel size	5
	Number of attention heads	4
Spatial Position Adaptor	Input pose dimension	7
	Fourier feature bands	8
	Causal temporal encoder layers	3
	Temporal encoder kernel size	3
	Injection mechanism	FiLM
	Injection feature dimension	256

Table 6: Spatial adaptor configuration

The second is the multi-resolution STFT loss $\mathcal{L}_{\text{STFT}}$. This loss is computed under multiple short-time Fourier transform (STFT) configurations, each with different FFT sizes, window sizes, and hop sizes. It consists of two components: the spectral convergence loss \mathcal{L}_{sc} , which penalizes differences in spectral magnitude, and the log STFT magnitude loss \mathcal{L}_{mag} , which computes an L1 loss on the log-magnitude spectrogram and better reflects human perception of loudness. The total STFT loss is defined as the average of these two components across all STFT resolutions.

B.4 Spatial Loss Formulation

We provide the full formulation of the spatial loss $\mathcal{L}_{\text{spatial}}$, which explicitly supervises inter-channel spatial cues beyond per-channel spectral similar-

ity. Its concrete form is defined in a format-adaptive way for binaural and First-Order Ambisonics (FOA) signals.

Binaural Spatial Loss. For binaural signals, we compute complex STFTs of the left and right channels, $S_L(f, t)$ and $S_R(f, t)$, under multiple STFT configurations. The interaural phase difference (IPD) is given by $\Delta\Phi(f, t) = \arg S_L(f, t) - \arg S_R(f, t)$. To avoid phase wrapping, we embed $\Delta\Phi$ into the complex plane and define

$$\mathbf{u}_{\text{IPD}}(f, t) = (\cos \Delta\Phi(f, t), \sin \Delta\Phi(f, t)) \in \mathbb{R}^2.$$

The IPD loss compares the embedded representations of the target and generated signals,

$$\mathcal{L}_{\text{IPD}} = \frac{\sum_{f, t} w_{\text{IPD}}(f) m(f, t) \left\| \mathbf{u}_{\text{IPD}}^{\text{pred}}(f, t) - \mathbf{u}_{\text{IPD}}^{\text{ref}}(f, t) \right\|_2^2}{\sum_{f, t} w_{\text{IPD}}(f) m(f, t) + \varepsilon},$$

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

Discriminator	Hyperparameter	Value
MPD	Periods	[2, 3, 5, 7, 11, 13, 17, 19, 23, 37]
MSD	Scales	raw, $\times 2$ pooling, $\times 4$ pooling
MRD	Resolution 1	[1024, 120, 600]
	Resolution 2	[2048, 240, 1200]
	Resolution 3	[512, 50, 240]
Attentional SCD	Backbone type	Axial attention
	Number of axial attention blocks	2
	Number of attention heads	4

Table 7: Discriminator configuration, MRD resolutions are specified as [FFT size, hop size, window size]

Hyperparameter	Value
Optimizer	Adam
Learning rate (G / D)	2×10^{-4}
Adam betas (β_1, β_2)	(0.8, 0.99)
Learning rate decay γ	0.999
Batch size	16
Audio segment length	16,384 samples
Loss weights	
$\mathcal{L}_{\text{adv}} (\lambda_{\text{adv}})$	1.0
$\mathcal{L}_{\text{fm}} (\lambda_{\text{fm}})$	2.0
$\mathcal{L}_{\text{mel}} (\lambda_{\text{mel}})$	45.0
$\mathcal{L}_{\text{STFT}} (\lambda_{\text{STFT}})$	1.0
$\mathcal{L}_{\text{spatial}} (\text{IPD/ILD})$	0.1
$\mathcal{L}_{\text{spatial}} (\text{FOA})$	2.0

Table 8: Training and optimization hyperparameters

where $w_{\text{IPD}}(f) = \exp(-(f/f_{\text{IPD,max}})^2)$ emphasizes low frequencies and $m(f, t)$ is an energy-based soft mask.

The interaural level difference (ILD) is defined in the log-magnitude domain as

$$\text{ILD}^{\text{ref}}(f, t) = 20 \log_{10} |S_L^{\text{ref}}(f, t)| - 20 \log_{10} |S_R^{\text{ref}}(f, t)|,$$

and analogously for ILD^{pred} . The ILD loss is

$$\mathcal{L}_{\text{ILD}} = \frac{\sum_{f,t} w_{\text{ILD}}(f) m(f, t) |\text{ILD}^{\text{pred}}(f, t) - \text{ILD}^{\text{ref}}(f, t)|}{\sum_{f,t} w_{\text{ILD}}(f) m(f, t) + \varepsilon},$$

with $w_{\text{ILD}}(f) = 1 - \exp(-(f/f_{\text{ILD,min}})^2)$ that emphasizes high frequencies.

The soft mask $m(f, t)$ is derived from the frame-wise energy of the reference signal. Let $E(t)$ be the RMS energy at frame t (averaged over frequency and channels), and

$$E_{\text{dB}}(t) = 10 \log_{10}(E(t) + \varepsilon).$$

We define a smooth frame-wise speech activity

$$s(t) = \sigma \left(\frac{E_{\text{dB}}(t) - \mu_{\text{VAD}}}{\sigma_{\text{VAD}}} \right),$$

where $\sigma(\cdot)$ is the sigmoid function, μ_{VAD} is the soft-VAD center in dB, and σ_{VAD} controls the transition width. The time-frequency mask is then

$$m(f, t) = m_{\text{min}} + (1 - m_{\text{min}}) s(t),$$

with $m_{\text{min}} > 0$ to avoid nullifying silent regions. The binaural spatial loss is

$$\mathcal{L}_{\text{spatial}}^{\text{bin}} = \lambda_{\text{IPD}} \mathcal{L}_{\text{IPD}} + \lambda_{\text{ILD}} \mathcal{L}_{\text{ILD}}.$$

FOA Spatial Loss. For FOA signals, we assume a B-format ordering (W, X, Y, Z) . Given target and predicted waveforms $y, \hat{y} \in \mathbb{R}^{B \times 4 \times T}$, we compute complex STFTs for each scale, obtaining

$$W(f, t), X(f, t), Y(f, t), Z(f, t)$$

for the reference and $\hat{W}(f, t), \hat{X}(f, t), \hat{Y}(f, t), \hat{Z}(f, t)$ for the prediction. The total FOA energy at each time-frequency bin is

$$E^{\text{ref}}(f, t) = |W|^2 + |X|^2 + |Y|^2 + |Z|^2,$$

$$E^{\text{pred}}(f, t) = |\hat{W}|^2 + |\hat{X}|^2 + |\hat{Y}|^2 + |\hat{Z}|^2.$$

Energy-weighted mask and frequency biases. We reuse the soft mask $m(f, t)$ from the binaural case, now interpreted per FOA STFT configuration. To steer supervision across frequency, we define a low-frequency bias for direction-related terms,

$$w_{\text{dir}}(f) = \exp(-(f/f_{\text{iv,max}})^2),$$

and a smooth mid-high-frequency bias for diffuseness-related terms. Let f_s be the sampling

rate and $\tilde{f} = f/(f_s/2)$ the normalized frequency. We set

$$w_{\text{diff}}(f) = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{\tilde{f} - c_{\text{diff}}}{w_{\text{diff}}}\right),$$

where c_{diff} controls the center of the transition and w_{diff} controls its width.

We also apply mild energy exponents E^α to emphasize high-energy bins without dominating the loss. We denote these exponents by α_{iv} , α_r , α_{diff} .

Intensity vector and directional term. The active intensity components are computed as

$$\begin{aligned} I_X^{\text{ref}}(f, t) &= \Re\{W^*(f, t)X(f, t)\}, \\ I_Y^{\text{ref}}(f, t) &= \Re\{W^*(f, t)Y(f, t)\}, \\ I_Z^{\text{ref}}(f, t) &= \Re\{W^*(f, t)Z(f, t)\}, \end{aligned}$$

and analogously for I_X^{pred} , I_Y^{pred} , I_Z^{pred} . We collect these into intensity vectors

$$\begin{aligned} \mathbf{I}^{\text{ref}}(f, t) &= [I_X^{\text{ref}}, I_Y^{\text{ref}}, I_Z^{\text{ref}}]^\top, \\ \mathbf{I}^{\text{pred}}(f, t) &= [I_X^{\text{pred}}, I_Y^{\text{pred}}, I_Z^{\text{pred}}]^\top. \end{aligned}$$

The directional mismatch is measured via the cosine distance

$$d_{\text{iv}}(f, t) = 1 - \frac{\mathbf{I}^{\text{ref}}(f, t)^\top \mathbf{I}^{\text{pred}}(f, t)}{\|\mathbf{I}^{\text{ref}}(f, t)\|_2 \|\mathbf{I}^{\text{pred}}(f, t)\|_2 + \varepsilon},$$

and we define

$$\mathcal{L}_{\text{iv_dir}} = \frac{\sum_{f, t} m(f, t) w_{\text{dir}}(f) \left(E^{\text{ref}}(f, t)\right)^{\alpha_{\text{iv}}} d_{\text{iv}}(f, t)}{\sum_{f, t} m(f, t) w_{\text{dir}}(f) \left(E^{\text{ref}}(f, t)\right)^{\alpha_{\text{iv}}} + \varepsilon}.$$

Normalized intensity ratio term. We normalize the intensity by total energy,

$$\begin{aligned} \mathbf{r}^{\text{ref}}(f, t) &= \frac{\mathbf{I}^{\text{ref}}(f, t)}{E^{\text{ref}}(f, t) + \varepsilon}, \\ \mathbf{r}^{\text{pred}}(f, t) &= \frac{\mathbf{I}^{\text{pred}}(f, t)}{E^{\text{pred}}(f, t) + \varepsilon}, \end{aligned}$$

and define

$$\mathcal{L}_r = \frac{\sum_{f, t} m(f, t) w_{\text{dir}}(f) \left(E^{\text{ref}}(f, t)\right)^{\alpha_r} \left\| \mathbf{r}^{\text{pred}}(f, t) - \mathbf{r}^{\text{ref}}(f, t) \right\|_1}{\sum_{f, t} m(f, t) w_{\text{dir}}(f) \left(E^{\text{ref}}(f, t)\right)^{\alpha_r} + \varepsilon}.$$

Diffuseness term. We compute the intensity norm

$$\|\mathbf{I}^{\text{ref}}(f, t)\|_2, \quad \|\mathbf{I}^{\text{pred}}(f, t)\|_2,$$

and define diffuseness as

$$D^{\text{ref}}(f, t) = 1 - \frac{\|\mathbf{I}^{\text{ref}}(f, t)\|_2}{E^{\text{ref}}(f, t) + \varepsilon},$$

$$D^{\text{pred}}(f, t) = 1 - \frac{\|\mathbf{I}^{\text{pred}}(f, t)\|_2}{E^{\text{pred}}(f, t) + \varepsilon}.$$

The diffuseness loss is then

$$\mathcal{L}_{\text{diff}} = \frac{\sum_{f, t} m(f, t) w_{\text{diff}}(f) \left(E^{\text{ref}}(f, t)\right)^{\alpha_{\text{diff}}} \left(D^{\text{pred}}(f, t) - D^{\text{ref}}(f, t)\right)^2}{\sum_{f, t} m(f, t) w_{\text{diff}}(f) \left(E^{\text{ref}}(f, t)\right)^{\alpha_{\text{diff}}} + \varepsilon}.$$

Log-energy term. Finally, we align the log-energy fields of reference and prediction:

$$\log E^{\text{ref}}(f, t) = \log(E^{\text{ref}}(f, t) + \varepsilon),$$

$$\log E^{\text{pred}}(f, t) = \log(E^{\text{pred}}(f, t) + \varepsilon),$$

and define

$$\mathcal{L}_{\text{elog}} = \frac{\sum_{f, t} m(f, t) w_{\text{diff}}(f) |\log E^{\text{pred}}(f, t) - \log E^{\text{ref}}(f, t)|}{\sum_{f, t} m(f, t) w_{\text{diff}}(f) + \varepsilon}$$

Multi-scale aggregation. In practice, all the above quantities are computed for multiple STFT parameter sets (n_{FFT} , hop, win). The four FOA terms $\mathcal{L}_{\text{iv_dir}}$, \mathcal{L}_r , $\mathcal{L}_{\text{diff}}$, $\mathcal{L}_{\text{elog}}$ are averaged over scales, and the final FOA spatial loss is

$$\mathcal{L}_{\text{spatial}}^{\text{FOA}} = \lambda_{\text{iv}} \mathcal{L}_{\text{iv_dir}} + \lambda_r \mathcal{L}_r + \lambda_{\text{diff}} \mathcal{L}_{\text{diff}} + \lambda_{\text{elog}} \mathcal{L}_{\text{elog}}.$$

C Details of Datasets

C.1 Recorded Binaural and FOA Data

We use both binaural and first-order Ambisonics (FOA) spatial audio data for training and evaluation. For the binaural branch, we adopt the MRSSpeech subset of the MRS Audio (Guo et al., 2025) corpus together with the EasyCom (Donley et al., 2021) dataset, which contain extensive indoor recordings captured with binaural microphones. These corpora cover multiple speakers, diverse source-listener spatial configurations, and both Chinese and English speech, providing realistic binaural characteristics and room acoustics. For FOA, we use the Spatial LibriSpeech (Sarabia et al., 2023) dataset, which is synthesized from LibriSpeech (Panayotov et al., 2015) and provides a large number of FOA-format spatial speech samples with corresponding position annotations. However, Spatial LibriSpeech only models azimuthal variation on the horizontal plane during spatialization and lacks diversity along the vertical dimension (elevation). This may result in that most samples would show silence in the z channel, potentially causing the model to overfit spatial perception on the horizontal plane while lacking sensitivity to the vertical direction.

1159
1160

C.2 Simulated Spatial Data from 1161 SoundSpaces (MP3D)

1162 To enrich spatial diversity, especially in elevation
1163 and in complex 3D room geometries, we additionally
1164 generate a large amount of simulated spatial
1165 data based on the SoundSpaces (Chen et al., 2022)
1166 simulation framework and Habitat-Sim (Savva
1167 et al., 2019). In this work we focus on indoor
1168 scenes from the Matterport3D (MP3D) dataset; for
1169 each MP3D environment we instantiate a Habitat-
1170 Sim simulator and attach an audio sensor config-
1171 ured either as binaural (2-channel) or FOA Am-
1172 bisonics (4-channel) at a sampling rate of 48 kHz.
1173 The listener (receiver) is placed at a height of 1.5 m
1174 above the floor, and the audio materials config-
1175 uration from MP3D is loaded to enable frequency-
1176 dependent reflection, absorption, and diffraction in
1177 the propagation engine. We calculate the relative
1178 pose between source and receiver, and use it as
conditioning input to the model.

1179
1180

C.3 Static BRIR/RIR Sampling and Position 1181 Generation.

1182 For the static subset, we randomly sample receiver
1183 and source positions on the MP3D navigation mesh.
1184 A candidate pair is accepted only if the horizontal
1185 distance lies within (1, 10) m and the height differ-
1186 ence is smaller than 2 m, which avoids degenerate
1187 configurations (too close or too far, or across floors).
1188 For each accepted pair we query the audio sensor
1189 once and obtain a binaural or FOA room impulse
1190 response (BRIR/RIR). All positions are initially
1191 given in the Habitat/BAT coordinate convention,
1192 where the horizontal plane is x - z , y points upwards,
1193 and the agent faces the $-z$ direction. For down-
1194 stream usage we convert all 3D positions (x, y, z)
1195 into a more conventional, listener-centric coordi-
1196 nate system with the horizontal plane being x - y , z
1197 pointing upwards, and the listener facing the $+y$
1198 direction. All relative positions (source minus re-
1199 ceiver) stored in our dataset are expressed in this
transformed coordinate system.

1200

C.4 Dynamic Simulated Trajectories.

1201 Besides the purely static BRIRs, we also construct
1202 a dynamic subset in which the listener remains
1203 fixed while the source moves through the envi-
1204 ronment. Concretely, for a given receiver position
1205 we randomly sample two source points that
1206 are both within a reasonable distance from the
1207 receiver and compute the shortest path between

1208 them on the navigation mesh. The resulting 3D
1209 path is uniformly subsampled to a fixed number
1210 of time steps (e.g., 20 frames per trajectory). At
1211 each step we update the source position in Habitat-
1212 Sim, query a new BRIR from the audio sensor, and
1213 record the corresponding source position, relative
1214 position, and coarse direction labels (left/right,
1215 front/behind, above/below) derived from the
1216 transformed coordinate system. For each utterance
1217 we also generate a frame-level pose sequence at
1218 20 Hz by repeating the (static) relative position or
1219 by aligning it with the dynamic trajectory, yielding
1220 an $N \times 7$ pose matrix per audio sample that is fully
1221 time-synchronized with the waveform.

C.5 Convolution with Mono Speech and 1222 Post-processing.

1223 To turn the simulated BRIR/RIRs into training
1224 data, we convolve them with clean, single-channel
1225 speech from the LibriSpeech (Panayotov et al.,
1226 2015) corpus. All LibriSpeech utterances are first
1227 resampled to 48kHz and converted to mono. For
1228 each utterance we randomly select one BRIR en-
1229 try, perform FFT-based convolution to obtain ei-
1230 ther 2-channel binaural or 4-channel FOA audio,
1231 and then truncate the result to match the original
1232 utterance length. We apply simple peak normaliza-
1233 tion (with a conservative safety margin) to avoid
1234 clipping and ensure that all simulated samples are
1235 loudness-consistent with the real-world data.

C.6 Overall Dataset Scale

1236 Combining the real and simulated corpora, our
1237 final training and evaluation set comprises ap-
1238 proximately 600 hours of binaural data and 900
1239 hours of FOA data. Among them, around
1240 220k binaural samples and 70k FOA samples
1241 are synthesized by convolving LibriSpeech with
1242 SoundSpaces-generated BRIR/RIRs in MP3D envi-
1243 ronments, while the remaining samples come from
1244 MRSSpeech, EasyCom, and Spatial LibriSpeech.
1245 All audio is uniformly resampled to 48kHz, and
1246 all spatial annotations are provided in the unified
1247 listener-centric coordinate system.

D FOA Results

1248 We present additional experimental results for FOA
1249 spatial audio synthesis. For FOA audio, we adopt
1250 similar evaluation metrics as for binaural audio,
1251 including audio quality metrics (PESQ, MRSTFT,
1252 MCD) and spatial consistency metrics (Corr_all
1253 and AUC_j_all). The spatial consistency metrics

Model	Corr_all (\uparrow)	AUC_j_all (\uparrow)	MRSTFT (\downarrow)	MCD (dB) (\downarrow)	PESQ (\uparrow)
HiFi-GAN	18.65	61.98	1.278	4.052	2.122
CARGAN	15.99	61.20	1.257	3.690	1.757
FARGAN	16.26	61.28	1.154	2.941	1.794
WaveFM	14.37	60.80	0.846	1.950	3.520
Vocos	19.49	62.92	0.918	1.453	2.997
Ours	18.53	63.44	1.248	3.449	1.972

Table 9: FOA Results

are derived from the ViSAGE work (Kim et al., 2025) and assess the ability of the generated audio to preserve spatial cues. For audio quality, we use common metrics such as PESQ, MRSTFT, and MCD to measure the quality of the generated audio. For the FOA format, we specifically evaluate the audio quality of the W channel. Table 9 presents a quantitative comparison of our method against several baseline models on the FOA spatial audio synthesis task. It can be observed that our method outperforms others in spatial consistency metrics (Corr_all and AUC_j_all), indicating better performance in preserving spatial cues. Furthermore, our method achieves audio quality metrics comparable to non-causal models, demonstrating strong audio synthesis capabilities.

E Latency Evaluation

This appendix details how we define and measure latency for streaming inference, and reports representative results under different chunk sizes.

E.1 Definitions

For streaming audio generation, we consider three types of latency:

Algorithmic latency (L_{alg} , ms). This is the inherent delay introduced by the streaming design, independent of hardware speed. Under chunked inference, a system that outputs audio only after receiving a full chunk has a lower bound

$$L_{\text{alg}} \geq T_{\text{chunk}} + T_{\text{lookahead}} + T_{\text{overlap}}, \quad (5)$$

where T_{chunk} is the chunk duration, $T_{\text{lookahead}}$ is any future-context requirement (0 for strictly causal designs), and T_{overlap} accounts for cross-fade/overlap-add schemes that require waiting for future samples. For our model, $T_{\text{lookahead}} = 0$ and $T_{\text{overlap}} = 0$.

Compute latency (L_{comp} , ms/chunk). This is the wall-clock time to run the model for one chunk

(forward pass in streaming mode). We report distributional statistics (p50/p90/p99) because tail latency is critical for real-time playback stability.

Real-Time Factor (RTF). To normalize compute latency across chunk sizes, we report

$$\text{RTF} = \frac{L_{\text{comp}}}{T_{\text{chunk}}}. \quad (6)$$

RTF < 1 indicates faster-than-real-time inference.

E.2 Chunking under $\text{sr} = 48 \text{ kHz}$, $\text{hop}=320$

With sampling rate $\text{sr} = 48 \text{ kHz}$ and hop size 320 samples, the feature frame rate is

$$f = \frac{48000}{320} = 150 \text{ frames/s}, \quad (7)$$

Therefore, chunk sizes of 40/60/80/100 ms correspond to 6/9/12/15 mel frames, respectively.

E.3 Measurement protocol

We benchmark streaming inference with batch size 1 and disable gradient computation. For GPU timing, we synchronize before and after each forward pass to measure true kernel execution time. We perform a warm-up phase to avoid one-time compilation and cache effects, then run a fixed number of iterations and collect per-chunk latency samples, from which we compute mean and percentiles (p50/p90/p99).

E.4 Results and discussion

Table 10 reports representative compute latency under different chunk sizes. Across repeated runs, the mean compute latency stays in a narrow band (approximately 15ms/chunk), while RTF improves as chunk size increases. This behavior is expected on GPUs when sequence lengths are short: fixed overheads (kernel launches, framework scheduling, memory movements) can dominate, and larger chunks may better utilize the GPU, reducing the *per-frame* cost even if ms/chunk is similar. Importantly, all tested settings achieve RTF < 1 , indicating real-time feasibility with substantial headroom.

Chunk	Mean	p50	p90	p99	RTF
40	15.24 ± 0.95	14.99	16.44	18.62	0.3811
60	15.15 ± 1.35	14.80	16.70	19.34	0.2526
80	15.52 ± 2.06	14.71	17.71	24.67	0.1941
100	15.86 ± 2.40	15.46	18.14	24.81	0.1587

Table 10: Representative compute latency (ms/chunk) for streaming inference at different chunk sizes under $sr = 48$ kHz and $hop=320$. We report p50/p90/p99 and $RTF = L_{\text{comp}}/T_{\text{chunk}}$.

1329 F Details of Experiments

1330 F.1 Subjective evaluation

1331 The subjective evaluation is conducted in a controlled acoustic environment featuring sound-
 1332 attenuated conditions, precisely calibrated play-
 1333 back systems, and frequency-equalized headphones
 1334 to ensure consistency across listening sessions. A
 1335 total of 200 audio segments are randomly sampled
 1336 from the test dataset for evaluation purposes. We
 1337 recruit 29 participants to provide perceptual ratings
 1338 across two dimensions: audio quality and spatial
 1339 perception, using a 5-point Likert scale ranging
 1340 from 1 (Poor) to 5 (Excellent).

1341 For audio quality assessment, we employ
 1342 the Mean Opinion Score for Quality (MOS-Q),
 1343 wherein participants utilize headphones to evaluate
 1344 the clarity and naturalness of the synthesized audio.
 1345 For spatial perception assessment, we adopt the
 1346 Mean Opinion Score for Spatialization (MOS-P),
 1347 where participants judge the authenticity of spatial
 1348 attributes, including the correspondence between
 1349 the perceived sound source localization (direction
 1350 and distance) and the textual prompt specifications.

1351 All participants receive appropriate compensation
 1352 at an hourly rate of \$20, yielding a total ex-
 1353 perimental cost of approximately \$1500. Prior to
 1354 participation, subjects are informed that their as-
 1355 sessments will be utilized exclusively for academic
 1356 research purposes. Detailed instructions provided
 1357 to participants for the audio evaluation protocol are
 1358 illustrated in Figure 4 and 5.

1360 F.2 Objective evaluation

1361 To ensure the reproducibility of our experiments,
 1362 we employ standard open-source implementations
 1363 for objective evaluation. The specific configura-
 1364 tions and libraries used are detailed below:

1365 **MRSTFT**: We utilize the Multi-Resolution Short-
 1366 Time Fourier Transform (MRSTFT) implemen-
 1367 tation from Auraloss (Steinmetz and Reiss, 2020).

The metric is computed as the sum of spectral convergence and log-magnitude distance across multiple window sizes.

<https://github.com/csteinmetz1/auraloss>

PESQ: Perceptual Evaluation of Speech Quality (PESQ) is evaluated using the Wideband mode (ITU-T P.862.2). Since our model generates 48 kHz audio, we downsample both the reference and synthesized signals to 16 kHz solely for this measurement using the python-pesq wrapper.

<https://github.com/ludlows/python-pesq>

MCD: We compute the Mel-Cepstral Distortion (MCD) to measure the spectral envelope difference. We use the mel-cepstral-distance library with Dynamic Time Warping (DTW) enabled to align the sequences before calculation.

<https://github.com/MattShannon/mcd>

Periodicity: To evaluate pitch accuracy and harmonic consistency, we calculate the periodicity error using the pre-trained CREPE model provided in the CARGAN repository (Morrison et al., 2022). The metric represents the root mean squared error between the periodicity vectors of the ground truth and generated audio.

<https://github.com/descriptinc/cargan>

ANG COS & DIS COS: To quantify spatial fidelity, we utilize the pre-trained Spatial-AST model (Zheng et al., 2024) to extract high-level spatial representations. We report the metrics as ANG COS (for angular consistency) and DIS COS (for distance consistency), where higher cosine similarity indicates better preservation of perceptible spatial cues.

<https://github.com/zszheng147/Spatial-AST>

RTF: Real-Time Factor (RTF) is calculated as the time required to generate the waveform divided by the duration of the audio on a single NVIDIA 4090 GPU.

1407 G Licenses and Availability

We respect the original licenses of all referenced artifacts and do not redistribute them. This work uses publicly available datasets. We do not redistribute any third-party audio content. Users must obtain the original datasets from their respective providers and comply with the original licenses/terms of use. We will release only derived metadata (e.g., file lists, splits, and non-invertible statistics) under CC

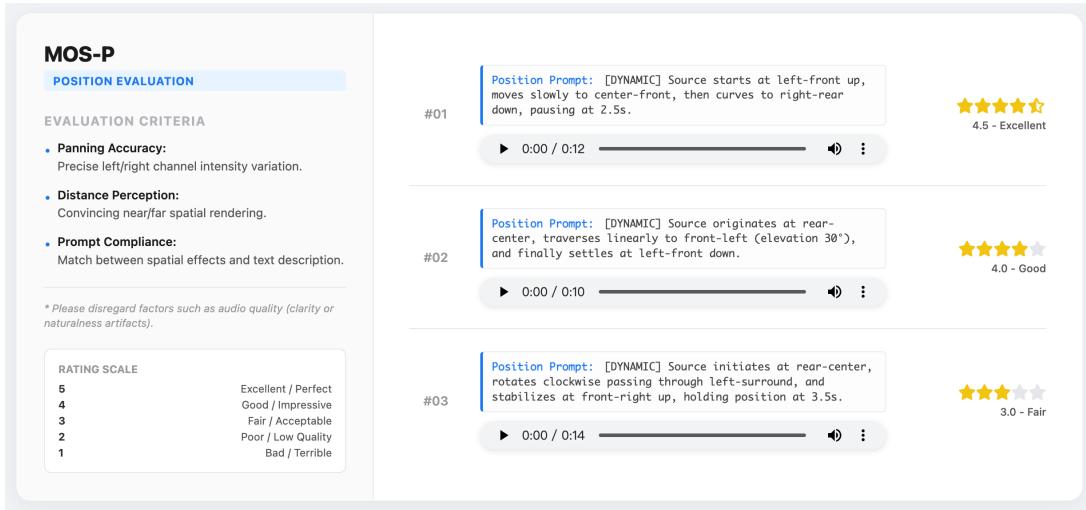


Figure 4: This is a screenshot of our MOS-P test website

Figure 5: This is a screenshot of our MOS-Q test website

1416
1417 BY 4.0, subject to the original dataset terms. Our
1418 codebase may depend on third-party libraries; these
1419 components remain under their respective licenses.
1420 Any external assets (e.g., pretrained backbones or
1421 evaluation tools) are used in accordance with their
1422 original licensing terms.

1422 **H Use of AI Assistants**

1423 We used AI-based writing assistant during
1424 manuscript preparation solely for language polish-
1425 ing, including grammar checking, spelling correc-
1426 tion, and improving clarity and readability of the
1427 text. All technical claims, experimental procedures,
1428 and interpretations were produced and verified by
1429 the authors.