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Abstract

Spatial audio vocoders aim to convert mel-
spectrograms produced by generative models
into spatial audio waveforms. Most existing
vocoder research focuses on monaural audio,
and direct extensions to spatial audio often de-
grade spatial quality by ignoring inter-channel
cues. We present CSAVocoder, a causal GAN-
based Spatial Audio Vocoder that jointly opti-
mizes waveform fidelity and spatial rendering.
Our framework introduces a spatial adaptor that
fuses multi-channel mel-spectrograms with dy-
namic source-listener pose information, and a
spatial consistency discriminator that explicitly
supervises inter-channel spatial cues such as
interaural level and phase differences. To meet
real-time requirements, we design a strictly
causal, stateful generator that supports efficient
streaming inference with constant memory
overhead. Experiments on large-scale spatial
audio datasets demonstrate that CSAVocoder
ensures audio quality and spatial fidelity while
maintaining real-time performance. Our demo
page is at: https://csavocoder.github.io.

1 Introduction

Unlike monaural audio, spatial audio renders sound
sources at different directions and distances, pro-
viding a more immersive listening experience. It
reconstructs a three-dimensional sound field and
exploits the natural localization mechanisms of the
human auditory system. By accurately modeling
these cues, spatial audio delivers a strong sense of
presence and realism in digital environments.
Spatial audio is increasingly important in ap-
plications such as virtual reality, augmented real-
ity (Gupta et al., 2022; Kailas and Tiwari, 2021),
and immersive gaming (Raghuvanshi and Snyder,
2018; Broderick et al., 2018; Yadegari et al., 2022).
Recent generative models have made progress
in spatial audio synthesis (Zhu et al., 2025; Lu
et al., 2025), but many of them operate in the mel-
spectrogram domain and rely on a vocoder to pro-

duce waveforms. Works such as ISDrama (Zhang
et al., 2025a) and DualSpec (Zhao et al., 20252a) use
pretrained HiFi-GAN-style vocoders and achieve
high single-channel quality, yet they largely ignore
inter-channel spatial consistency. Most vocoder
studies still target single-channel audio, and direct
extensions to spatial audio often degrade spatial
quality because they ignore inter-channel cues so
the necessity of relative pose between the sound
source and the listener is a critical spatial factor
in spatial audio rendering. Recent works (Heydari
et al., 2025; Singh Kushwaha et al., 2024; Templin
et al., 2025) use various forms of spatial informa-
tion, including explicit coordinates and features
extracted from visual inputs. The relative position
controls loudness and spectral coloration, while
orientation affects perceived direction and spatial
awareness. Therefore, an effective spatial audio
vocoder must explicitly model and exploit pose in-
formation to improve both signal quality and spatial
perception.

On the other hand, real-time and efficiency re-
quirements further complicate spatial audio ren-
dering. In virtual and augmented reality, user in-
teraction and rapid scene changes require spatial
audio to react with low latency in order to maintain
immersion. Prior work (Joy et al., 2024; Zhang
et al., 2025a) emphasizes real-time rendering and
the real-time factor (RTF). Since the vocoder is the
final stage of spatial audio generation, its inference
speed directly impacts end-to-end system latency
and is crucial for real-time applications.

Designing a spatial audio vocoder that is both
powerful and efficient is therefore challenging. The
model must simultaneously (1) synthesize wave-
forms with high fidelity, (2) render perceptually
valid spatial cues such as interaural level differ-
ences (ILD) and interaural phase differences (IPD),
and (3) learn the complex mapping from pose to
acoustic behavior, including source position and
motion. In addition, the vocoder needs to be causal
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and support low-latency streaming inference that

generates audio continuously in chunks.

To address these challenges, we propose CSAV-
ocoder. In summary, our contributions are:

* We design a GAN-based spatial audio vocoder
with a causal architecture that supports low-
latency streaming inference while maintaining
high-quality spatial audio synthesis.

* We introduce a pose-conditioning mechanism
using position adaptor that encodes the relative
source—listener pose and mel adaptor to capture
inter-channel relationships, improving spatial au-
dio rendering and perceptual quality.

* We propose an architecture that supports multiple
spatial audio formats and learns an end-to-end
mapping from multi-channel mel-spectrograms
to multi-channel spatial audio waveforms.

2 Related Work

Our work lies at the intersection of spatial audio
rendering, high-fidelity neural vocoders, and real-
time synthesis.

2.1 Spatial Audio Rendering

Spatial audio rendering aims to construct immer-
sive auditory scenes by modeling sound propaga-
tion in three-dimensional space. Among existing
representations, binaural audio and First-Order Am-
bisonics (FOA) are particularly central. Binaural
audio directly models ear-canal signals via head-
related transfer functions (HRTFs) and is the final
perceptual format for headphone playback, while
FOA provides a spherical-harmonic, scene-centric
representation with rotational equivariance and is
widely used in VR and 360° video systems. These
two formats are therefore the primary targets of
many generative spatial audio models.

A broad line of work studies spatial audio gen-
eration from visual, textual, or multimodal inputs.
2.5D Visual Sound (Gao and Grauman, 2019) up-
mixes monophonic audio to binaural signals using
visual cues in a regression setting. More recent
methods move toward end-to-end spatial genera-
tion: ViSAGe (Kim et al., 2025) predicts FOA from
silent video, ISDrama (Zhang et al., 2025a) models
long-form spatial narratives with explicit real-time
constraints, Diff-SAGe (Singh Kushwaha et al.,
2024) applies diffusion in the complex spectral do-
main to better preserve inter-channel phase, and
BEWO (Sun et al., 2024) enables text-driven bin-
aural generation. ImmerseDiffusion (Heydari et al.,

2025) and In-the-Wild Audio Spatialization (Pan
et al., 2025) use spatial and semantic conditions
to synthesize FOA or binaural audio for complex
scenes.

Many of these systems operate primarily in the
spectral domain and rely on separate vocoders or
reconstruction stages, which introduce additional
latency. Spatial information is often injected im-
plicitly via latent variables or high-level prompts,
and only a few works, such as ISDrama and Im-
merseDiffusion, combine explicit spatial condition-
ing with considerations of real-time performance.
This places strong requirements on the spatial au-
dio vocoder at the end of the pipeline to generate
high quality spatial audio with precise spatial cues.

2.2 Neural Vocoders

Neural vocoders map acoustic features to wave-
forms and form the last stage of audio generation.
GAN-based vocoders dominate due to favorable
quality-efficiency trade-offs. HiFi-GAN (Kong
et al., 2020) introduces multi-period and multi-
scale discriminators; BigVGAN (Lee et al., 2022)
improves robustness via periodic activations and
anti-aliasing; FARGAN (Valin et al., 2024), CAR-
GAN (Morrison et al., 2022), and QGAN (Chaud-
hary and Abrol, 2024) reduce parameters and com-
puting complexity. MusicHifi (Zhu et al., 2024)
is an efficient high-fidelity stereophonic vocoder
which can be used to enhance the fidelity of a low-
resolution audio.

Alternative approaches operate in structured do-
mains. Vocos (Siuzdak, 2024) predicts complex
STFT coefficients; AF-Vocoder (Chen et al., 2025)
applies frequency-domain artifact filtering; Dis-
Coder (Lanzendorfer et al., 2025) generates in the
latent space of neural audio codecs. Diffusion
and flow-based vocoders such as DiffWave (Kong
et al., 2021), Fregrad (Nguyen et al., 2024), and
WaveFM (Luo et al., 2025) offer high perceptual
quality via iterative denoising or direct transport
learning. These existing vocoders primarily tar-
get monophonic or stereophonic audio and do not
explicitly model spatial cues, limiting their effec-
tiveness for spatial audio rendering.

2.3 Real-time Speech Synthesis

Real-time synthesis is critical for interactive ap-
plications where latency must stay below percep-
tual thresholds, favoring causal architectures and
streaming inference. Online voice conversion sys-
tems such as CONAN (Zhang et al., 2025b) use



chunk-wise state caching for bounded-delay con-
version. For vocoders, WaveHax (Yoneyama et al.,
2025b) and MS-WaveHax (Yoneyama et al., 2025a)
adopt causal convolutions with shuffle-based up-
sampling; DLL-APNet (Du et al., 2025) combines
distillation and simplification; MelFlow (Welker
et al., 2025) adapts flow models to causal mel-to-
waveform mapping; BinauralFlow (Liang et al.,
2025) demonstrates streamable binaural genera-
tion. These advances motivate spatial vocoders that
jointly achieve high spatial fidelity and streaming
capability.

3 Method

3.1 Task Definition

We aim to synthesize a multi-channel spatial audio
waveform y € RE*L from a multi-channel mel-
spectrogram M € RE*F*T and the corresponding
spatial pose sequence P € RP»*T», Here, C' de-
notes the number of channels, L is the waveform
length, F'is the number of mel frequency bins, and
T is the number of mel frames. The sequence P
captures the time-varying pose of the sound source
relative to the listener, where D), is the pose dimen-
sion and 7}, is the number of pose samples. Each
pose vector consists of a 3D Cartesian position
(x,y,2) and a 4D quaternion (g, ¢z, ¢y, q-) that
encodes orientation, so D, = 7.

We formulate the problem as learning a condi-
tional generative function GG that maps the inputs
to the target waveform:

y = G(M, P;0), ey

where 0 denotes the learnable parameters of the
generator.

3.2 GAN-based Vocoder

Our framework is built on HiFi-GAN vocoder con-
sisting of a generator GG and a set of discriminators
D, and extend its generator and discriminator stack
to support spatial conditioning and strictly causal,
streaming synthesis.

3.2.1 Generator

The generator follows the overall topology of HiFi-
GAN which uses a convolutional network to upsam-
ple the input mel-spectrogram on temporal domain.

The Generator takes output from the Spatial Mel
Adaptor and Spatial Position Adaptor as condi-
tioning inputs. Tensors are fed into a series of

upsampling and residual blocks to gradually in-
crease the temporal resolution to that of the target
waveform. We replace standard transposed convo-
lutions with our ShuffleUpsampleBlock. First, the
CausalConvl1d block projects the channels from
C to Coy - s, producing X' € REX(Cous)xTin
Then a ShuffleBlock reshapes this tensor to X" €
RB*Coux(Tins) by folding extra channels into the
time dimension. Since pixel shuffle is a pure ten-
sor reordering without temporal mixing, it pre-
serves the causality of the preceding convolution
and yields artifact-free causal upsampling.

The residual blocks forming the multi-receptive-
field fusion (MRF) stack are modified in the same
spirit. Each StreamingResBlock consists of several
causal convolutions with different dilation rates to
capture patterns at multiple temporal scales, and
maintains an internal buffer whose length matches
its effective left context.

3.2.2 Discriminator

Conventional Wave and Spectral Discriminators
To ensure high fidelity in both waveform and spec-
tral domains, we adopt the standard MPD and MSD
from HiFi-GAN (Kong et al., 2020) and MRD from
BigVGAN (Lee et al., 2022) to ensure high-fidelity
waveform and spectral reconstruction. Each sub-
discriminator computes an STFT with a specific
configuration, allowing the model to detect arti-
facts that appear only at particular time-frequency
resolutions.

Spatial Consistency Discriminator To explic-
itly supervise spatial structure, we introduce a Spa-
tial Consistency Discriminator (SCD) that operates
on multi-channel log-mel spectrograms and pro-
vides spatially informed adversarial gradients to the
generator. Given a multi-channel waveform y €
RBXCXT  the SCD computes M € REXCXFxT
and projects it via a 2D convolution into latent
features X e RExdXCxT’  Ap axijal-attention
backbone then applies MHSA along the tempo-
ral axis (B - C,T’,d) and along the channel axis
(B-T',C,d), jointly modeling long-range dynam-
ics and inter-channel relationships such as ILD/IPD
in binaural signals and coherent patterns in FOA.
A lightweight convolutional head finally maps the
attended features to a scalar spatial consistency
score per segment, complementing conventional
discriminators that primarily target single-channel
fidelity.
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Figure 1: Overview of our model architecture.

3.2.3 Training Objectives

To train the generator G (the vector-field network
vg) and the discriminator set D, we use a compos-
ite objective composed of several weighted loss
terms. We adopt the standard Least-Squares GAN
adversarial loss (L,qv) (Mao et al., 2017), Feature
Matching loss(Lgy) (Kumar et al., 2019), and multi-
resolution spectral reconstruction losses (L and
Lstrr) (Kong et al., 2020). The detailed formu-
lations of these standard objectives are provided
in Appendix B. Our primary contribution to the
objective function is the format-aware Spatial Loss,
designed to explicitly supervise spatial cues.

Spatial Loss Standard spectral losses treat chan-
nels independently, failing to constrain inter-
channel spatial cues. We propose a format-aware
spatial loss Lgpaiar that explicitly supervises physi-
cal attributes.

For Binaural Audio, based on the Duplex The-
ory, we combine Interaural Phase Difference (IPD)
and Level Difference (ILD) losses: E?I};‘ﬁal =
AepLipp + AiLpLiDp. Specifically, Lirp operates
on multi-resolution STFTs and compares phase
differences in a sine-cosine embedding to avoid
wrapping, with supervision concentrated in the low-
frequency region using a Gaussian weighting. Con-
versely, L1 p measures the discrepancy between
log-magnitude level differences of the two ears,
emphasizing high frequencies through a comple-
mentary weighting.

For FOA Audio, we define physical descriptors:

£f§ﬁal = AivLiv_dir + AcLr + AditrLaitr + Aelog Lelog-

Direction-related terms (Liy_gir, £;) constrain the
intensity vector’s angle and magnitude with a
low-frequency bias, while diffusion-related terms
(Laifr, Lelog) capture ambient envelopment with a
mid-high-frequency bias.

To stabilize training, all terms are modulated
by an energy-based soft mask derived from the
ground-truth signal. Detailed formulations are in
Appendix B.4.

Full Objective The total loss functions for the
generator and the discriminators are defined as
weighted sums of the components described above.

For each discriminator Dj, in the discriminator
set D, the total loss consists only of the adversarial
term:

Lp =) Luy(Di;G). )

For the generator G, the total loss is defined as

£G = Eadv(G; D) + )\fmﬁfm + Amelﬁmel
+ ASTFTLSTFT + Aspatial Cspatial (3)
where Afm, Amel, AsTFT, and Agpagial are hyperpa-

rameters that balance the contributions of different
loss terms.

3.3 Causal Architecture for Streaming
Synthesis

We redesign the HiFi-GAN generator as a fully
causal, explicitly stateful architecture tailored for
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Figure 2: This figure shows the continuous streaming infer pipeline. Starting with multi-channel mel-spectrogram,
we compute Mel Embedding and Pos information with Mel Adaptor and Position Adaptor. Then they are fed into
the Conv Backbone and after upsampling and resblock, a chunk of wave is generated. All streaming blocks has its
own state cache in the cache bank which restores a few chunk states before themselves and computes results strictly

following causal restrictions.

streaming synthesis. All stages from mel features
to waveform are constructed to satisfy strict causal-
ity, while a stateful inference mechanism avoids
redundant computation in chunk-based processing.

Strict Causal Property When mapping a mel-
spectrogram M = {mi,...,mr} to waveform
W = {w,...,wp}., strict causality requires
that each output sample w; depends only on input
frames {m, ..., m;} whose timestamps do not ex-
ceed that of w;. Any dependency on future frames
m; with j > ¢ violates this constraint. Our design
enforces this property at the operator level.

Stateful Streaming Inference. Causality alone
is insufficient for efficient streaming, since naively
concatenating long contextual prefixes for each
chunk leads to substantial redundant computation.
We therefore implement all context-dependent lay-
ers in a stateful form, where each layer accepts both
the current input chunk and a compact cache from
the previous step, and returns the current output
together with an updated cache that stores exactly
the left-context features needed for the next chunk.
As shown in Figure 2, during streaming synthesis,
the generator processes a sequence of mel chunks
while propagating a global state object that aggre-

gates the caches of all stateful layers, avoiding any
recomputation of past activations.

3.4 Spatial Adaptor

Standard mono-channel vocoders lack mechanisms
to process multi-channel spectrograms or incorpo-
rate heterogeneous pose conditioning. To bridge
this gap, we introduce the Spatial Adaptor, com-
prising two parallel modules to encode spectral and
geometric cues respectively.

3.4.1 Attentional Mel Adaptor

This module fuses the multi-channel mel-
spectrogram M € RBXCXFXT into a unified
single-stream representation X € RPXdinxT
while preserving implicit spatial cues (e.g.,
IPD/ILD). First, we apply a shared weight-
normalized 1D convolution to each channel in-
dependently to extract local features Xy, €
RB*CxdxT To capture nonlinear inter-channel
dependencies, we then employ Multi-Head Self-
Attention along the channel axis at each time step.
Unlike fixed difference operations, this data-driven
approach dynamically weights the contribution of
each channel. Finally, the attended features are con-
catenated and projected viaa 1 x 1 convolution to



the backbone dimension dp;g, serving as the unified
input to the generator.

3.4.2 Spatial Position Adaptor

This adaptor converts the raw pose sequence P into
dense, physically meaningful conditioning Xos.

Feature Extraction & Encoding: From the 7D
raw pose, we derive Cartesian coordinates and for-
ward vectors (from quaternions), augmented with
first-order velocity differences to capture kinematic
motion. To mitigate the spectral bias of MLPs,
we map these scalars to high-dimensional sinu-
soidal representations using Fourier feature encod-
ing (Mildenhall et al., 2021), enabling sensitivity
to fine-grained spatial changes.

Temporal Modeling & Injection: The en-
coded features are processed by CausalPosEncoder
(stacked causal dilated convolutions) to model mo-
tion trajectories. We inject this condition into
the generator via Feature-wise Linear Modulation
(FiLM). For each upsampling block, audio features
Xaudio are modulated by scaling v and bias /3 pro-
jected from the pose embeddings: FILM (Xaudio) =
(1 + tanh(7)) - Xaudio + -

3.5 Unified Framework for Spatial Audio

Traditional vocoders are mono-centric or naively
replicate single-channel outputs, limiting their ap-
plicability to spatial audio. We design a channel-
free generator where the shared backbone performs
identical upsampling for any channel count: the
Attentional Mel Adaptor fuses a C-channel mel-
spectrogram into a fixed-dimensional representa-
tion, and the final projection layer outputs exactly
C waveform channels. For adversarial training,
we pair this flexible generator with channel-aware
discriminator heads specialized for each format.
At inference, a single checkpoint handles arbi-
trary supported formats by mapping the input mel-
spectrogram and its channel configuration directly
to spatial audio output. The design is naturally ex-
tensible: supporting new standards (e.g., 5.1 or 7.1
surround) requires only adding a format-specific
spatial loss and discriminator head, without modi-
fying the generator backbone.

4 Experiment

4.1 Experiment Details

Dataset We use both binaural and FOA formats
data. For binaural data, we adopt the MRSSpeech

subset of MRSAudio (Guo et al., 2025) and the
EasyCom (Donley et al., 2021) dataset. For
FOA data, we use the Spatial LibriSpeech (Sara-
bia et al., 2023) dataset, synthesized from Lib-
riSpeech (Panayotov et al., 2015), which offers
a large number of FOA samples with spatial anno-
tations. To increase spatial and acoustic diversity,
we further generate simulated data using the sound-
space toolkit. In total, our training corpus contains
roughly 600 hours of binaural data (about 350k
samples) and 900 hours of FOA data (about 310k
samples), all stored as 16-bit PCM at a sampling
rate of 48 kHz.

We preprocess EasyCom and MRSSpeech
datasets using the ClearVoice (Zhao et al., 2025b)
denoising algorithm to enhance audio quality. We
extract 700 random segments from all datasets as
test set, then split the remaining dataset into train-
ing/validation sets with a ratio of 9:1. The detailed
statistics are shown in appendix C.

Baseline We compare our proposed method with
several vocoder baselines. We choose original
HiFi-GAN (Kong et al., 2020), Vocos (Siuzdak,
2024) CARGAN (Morrison et al., 2022), FAR-
GAN (Valin et al., 2024) and WaveFM (Luo et al.,
2025) as our baselines. While recent works such
as MusicHiFi (Zhu et al., 2024) have explored spa-
tial audio vocoding, their implementations are not
publicly available.Since there is a lack of dedicated
spatial vocoder models for spatial audio generation,
we select the above-mentioned baselines, which
have demonstrated strong performance in monaural
audio generation tasks. We perform channel-wise
inference to generate binaural and FOA format au-
dio for comparison with our model.

Metrics Our evaluation protocol comprises both
subjective listening tests and objective metrics.

The objective evaluation addresses general audio
quality and spectral/temporal similarity as well as
spatial characteristics.

For waveform and spectral similarity we adopt
the metrics used in BinauralGrad(Leng et al., 2022)
MCD(Mel-cepstral distortion) to measure spectral
distortion, Periodicity to assess periodicity in the
audio. and MRSTFT, which combines spectral con-
vergence with log- and linear-magnitude terms to
improve spectral alignment. We also report PESQ
as a perceptual measure for speech-related quality
assessment. Except for PESQ, lower metric values
indicate better performance.

To quantify spatial fidelity, we introduce two



consistency measures ANG Cos and DIS Cos to re-
spectively evaluate angular and distance similarity
between generated and reference signals. Practi-
cally, we extract angular and distance embeddings
from binaural audio using Spatial-AST. Because
Spatial-AST(Zheng et al., 2024) produces position
estimates only for static sources, we partition each
audio into 1-second segments, compute the cosine
similarity between predicted and ground-truth em-
beddings within each segment, and then average
these segment-level similarities to obtain an overall
spatial-consistency score. These metrics are report
in percentage format.

we utilize subjective MOS-Q (Mean Opinion
Score for Quality) to evaluate the quality of gener-
ated audio and MOS-P (Mean Opinion Score for
Position) to assess spatial perception. Implementa-
tion details are in Appendix F.

4.2 Quantitative Comparison

We compare our model with existing vocoder
baselines and present the metric results in Ta-
ble 1. As shown in the table, our approach sig-
nificantly outperforms all baselines on spatial met-
rics while achieving competitive results on audio
metrics. This demonstrates that explicitly model-
ing inter-channel relationships through our Spatial
Mel Adaptor and supervising spatial cues via the
Spatial Consistency Discriminator are effective for
preserving spatial information. For audio quality
metrics, our model achieves qualitative reconstruc-
tion results. Our PESQ score is lower than non-
causal SOTA baselines such as Vocos and WaveFM,
which we attribute to the strictly causal constraint
as our causal convolutions can only access past
context, whereas non-causal models leverage bidi-
rectional receptive fields that benefit perceptual
quality. More results on FOA are in Appendix D.

We report the Real-Time Factor (RTF) measured
on a single NVIDIA RTX 4090 GPU. Our model
achieves RTF = 0.1587, which is well below unity
and confirms that our causal streaming architecture
supports real-time generation. And detailed results
of latency experiment are in Appendix E.

These results demonstrate that our model effec-
tively bridges the gap between high-fidelity wave-
form synthesis and accurate spatial rendering. The
causal architecture introduces a minor quality trade-
off compared to non-causal models, but this is an
acceptable cost for enabling low-latency streaming
applications.

4.3 Qualitative Comparison

We conduct a qualitative comparison of our pro-
posed model with the baselines. We present the
generated audio samples in Figure 3. The first row
is the GT audio and the second is audio predicted by
our model, followed by baseline predictions. Our
causal model preserves the harmonic stacks and
formant trajectories that closely match the ground
truth on both channels, while maintaining consis-
tent left-right spectral patterns. Compared with the
baselines, our results exhibit sharper and more co-
herent harmonic structures with fewer band-wise
artifacts and a cleaner noise floor. Although our
causal generation still shows slightly smoother tran-
sients and mildly reduced high-frequency detail
than non-causal counterparts, it achieves a highly
similar overall spectral structure, indicating that
high perceptual quality is attainable under causal
constraints. We present more qualitative results in
our demo page.

4.4 Subjective Evaluation

We conduct subjective listening tests to evaluate
the quality and spatial perception of the generated
audio.

We show the subjective evaluation result in Ta-
ble 2. For spatial quality MOS-P test we ask lis-
teners to rate how accurately they can perceive the
position of the sound source in the generated au-
dio compared to the ground truth position on a
scale from 1 to 5. Our model achieves the highest
MOS-P score among all models, indicating supe-
rior spatial perception. For audio quality MOS-Q
test we ask listeners to rate the overall audio qual-
ity of the generated samples on a scale from 1 to 5.
Our model also achieves high MOS-Q score, but
causal generating may be slightly inferior in audio
quality compared to non-causal models as they are
able to utilize future context.

Model MOS-P MOS-Q

HiFi-GAN 3.86 +0.19 3.98 +0.17
CARGAN 390+£0.18 4.03+0.14
FARGAN 3.934+0.14 4.07+0.15
WaveFM 4.13+0.13 4.174+0.12
Vocos 4.09+0.15 4.244+0.11
Ours 4.25+0.16 4.094+0.21
GT 4.42+0.11 4.414+0.16

Table 2: Subjective Evaluation Results



ANG DIS Coe
Model CoS (1) CoS (1) MRSTFT () PESQ (1) MCD ()  Periodicity(]) RTF (|)
HiFi-GAN 39.07 68.37 1.470 1.562 5.329 0.169 0.0622
CARGAN 30.00 63.71 1.194 1.739 3.377 0.160 0.1348
FARGAN 23.53 56.03 1.219 1.885 3.447 0.161 0.1916
WaveFM 41.36 71.96 1.079 2.400 2.727 0.141 0.1634
Vocos 40.04 70.23 1.039 2.510 1.892 0.113 0.0339
Ours | 62.11 77.05 | 1.223 2.109 2.153 0.107 0.1587

Table 1: Quantitative Comparison

HiFi-GAN

Ground Truth

WaveFM

Vocos

Figure 3: Qualitative comparison.

4.5 Ablation Study

We perform ablation studies of our proposed com-
ponents and present the results in Table 3.

All proposed components contribute to the over-
all performance of our model. Removing Spatial
Mel Adaptor causes significant drop in spatial met-
rics, as no inter-channel information is utilized.
Using 4 attention heads in Spatial Mel Adaptor
yields the best performance. However, removing
the Position Adaptor results in moderate perfor-
mance degradation, indicating that spatial informa-
tion can still be partially captured through Spatial
Mel Adaptor. The experiment shows that the Spa-
tial Consistency Discriminator helps improve spa-
tial metrics. But during our experiments, we find
that only careful tuning of the weight of adversarial
hyperparameters can lead to performance improve-
ment, otherwise it may cause training instability.

5 Conclusion

We present CSAVocoder, a spatial audio vocoder
that jointly addresses high-fidelity waveform syn-
thesis and accurate spatial rendering. Our frame-
work extends the GAN architecture with three key
innovations: (1) a spatial adaptor that fuses multi-
channel mel-spectrograms with dynamic pose in-
formation to capture inter-channel relationships, (2)
a spatial consistency discriminator that explicitly

Settin ANG DIS
i COS (1) COS (1)

w/o Mel Adaptor 42.60 65.39
Mel Adaptor 2 head 61.03 76.55
Mel Adaptor 8 head 61.50 76.70
w/o SCD 58.82 74.63
w/o Position Adaptor | 54.78 70.63
Mel Adaptor 4 head 62.11 77.05

Table 3: Ablation Study

supervises spatial cues, and (3) a strictly causal,
stateful generator that enables efficient streaming
inference with constant memory overhead.

Experimental results demonstrate that CSAV-
ocoder outperforms existing channel-wise vocoders
in spatial fidelity and synthesis well audio qual-
ity while maintaining real-time performance. The
universal architecture supports multiple spatial au-
dio formats without format-specific modifications,
making it a practical solution for immersive au-
dio applications such as virtual reality, augmented
reality, and spatial communication.

We hope that the explicit modeling of spatial in-
formation and the causal streaming design provide
a strong foundation for future work on real-time
spatial audio generation.



Limitations

Our work has three main limitations. First, es-
tablishing fair comparisons against causal base-
lines is challenging because different implemen-
tations adopt distinct buffering strategies and run-
time optimizations that affect both latency and qual-
ity. Many strong vocoders are optimized for of-
fline generation and benefit from non-causal con-
text or heavier post-processing; even when adapted
to streaming, their engineering choices can dom-
inate measured runtime. A standardized causal-
baseline suite with matched end-to-end latency bud-
gets and consistent objective measurements is left
for future work. Second, we focus on binaural
and FOA formats; extending to higher-order am-
bisonics (HOA), multichannel loudspeaker layouts
(e.g.,5.1/7.1), object-based audio, and personalized
HRTF rendering is non-trivial. Increasing channel
counts changes the required inductive bias, stabil-
ity of adversarial training, and computational cost,
and different ambisonic conventions may introduce
dataset mismatches. Third, we condition on pose
(position and orientation), but alternative or com-
plementary representations may be more robust or
expressive, such as relative geometry features (dis-
tance/azimuth/elevation), scene-aware embeddings
from visual or 3D context, or learned spatial tokens
that summarize multi-source environments. We do
not exhaustively explore these design axes.

Ethical Considerations

This paper presents CSAVocoder, a causal and state-
ful vocoder for low-latency spatial audio generation
conditioned on acoustic features. While the model
does not generate linguistic content on its own, it
can be integrated into upstream TTS/VC systems;
therefore, both model- and data-related risks must
be considered.

Data provenance, licensing, and privacy. We
rely on publicly available speech/spatial-audio cor-
pora and simulation pipelines. We do not claim
ownership of any third-party audio content and rec-
ommend that any release avoid redistributing raw
audio unless explicitly permitted by original licens-
es/terms. Derived artifacts such as file lists, splits,
and evaluation scripts should be shared in a way
that enables reproducibility while reducing privacy
exposure. Speech datasets may contain personally
identifying information or sensitive attributes.

Risks from real-time generation and speech pri-
vacy. Low-latency speech generation can enable
near-real-time impersonation, “live” spoofing in
voice authentication, and the re-synthesis of inter-
cepted private conversations. Spatial audio further
increases realism and may strengthen deceptive sce-
narios. In addition, pose conditioning introduces
an auxiliary privacy surface: logged 3D trajecto-
ries and orientations can reveal behavioral patterns,
attention, or activity context in immersive systems.

Potential harmful applications. Beyond deep-
fakes, potential misuse includes covert surveillance,
harassment, social engineering, or generating mis-
leading evidence. Dataset misuse may include
training downstream models for speaker identifica-
tion, demographic profiling, or other applications
that participants did not consent to, especially when
data is repurposed outside its original scope.

Mitigations and responsible release. We recom-
mend (i) clear acceptable-use terms and licenses;
(i) optional watermarking/provenance signals and
guidance for detection; (iii) restricting and docu-
menting deployment contexts; (iv) minimizing re-
tention of raw audio, intermediate representations,
and pose logs; and (v) reporting limitations and
failure modes. For listening tests, risks are minimal
but include fatigue; conservative volume, breaks,
and withdrawal options are advised.

Bias and environmental impact. Training data
and simulators may under-represent languages, ac-
cents, acoustic environments, and accessibility-
related speech characteristics, leading to uneven
performance. Finally, while causal inference can
reduce runtime cost, training remains compute-
intensive; we encourage transparent reporting of
compute and settings to support reproducibility and
responsible scaling.
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A Implementation Details

This appendix provides the detailed hyperparam-
eters and architectural configurations used in our
experiments.

A.1 Audio and Spectrogram Parameters

All audio processing and mel-spectrogram extrac-
tion are conducted using the parameters listed in
Table 4. The overall upsampling factor of the gen-
erator is set to 320 to match the hop size used in
mel-spectrogram extraction.

Table 4: Audio processing and mel-spectrogram extrac-
tion parameters

Parameter Value
Sample rate 48,000 Hz
FFT size 1024
Hop size 320
Window size 1024
Number of mel bins 128
Mel fumin 20 Hz
Mel finax 24,000 Hz

A.2 Generator Architecture

The generator backbone G is based on the HiFi-
GAN V1 configuration and is modified to support
causal streaming synthesis. The total upsampling
factor is 8 X 5 x 4 x 2 = 320. The detailed config-
uration is shown in Table 5.

A.3 Spatial adaptor Architecture

The spatial adaptor consists of two core submod-
ules: the attention-based mel adaptor and the spa-
tial position adaptor. Their configurations are sum-
marized in Table 6.

A.4 Discriminator Configuration

We employ a combination of four discriminators to
evaluate the generated audio from complementary
perspectives. Table 7 summarizes their configura-
tions.

A.5 Training and Optimization
Hyperparameters

The training and optimization hyperparameters are
listed in Table 8. We adopt a standard adversarial
training setup with additional spectral and spatial
losses.
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B Losses Design

B.1 Adversarial Objective (Laqv)

We adopt the Least-Squares GAN (LS-GAN)
for adversarial training.  For each discrim-
inator Dy in the set {D}, the discrimina-
tor loss is Lagy(Dy, G) Ey [(Dr(y) —
1)?|4+E,.c[Di(G(z, ))?], which encourages high
scores for real samples y and low scores for gener-
ated samples G(z, c).

The generator adversarial loss is Lagy (G, D) =
>k Ezc[(Dr(G(z, ¢)) — 1)?], which encourages
all discriminators to regard generated audio as real.

Since D comprises the MPD, MSD, MRD, and
SCD introduced above, the final adversarial objec-
tives are Loay(G) = Y1 Laav(G; D), Laav(D) =
>k Laav(Dy; G), which jointly enforce alignment
with real audio in temporal structure, multi-scale
patterns, spectral detail, and spatial consistency.

B.2 Feature Matching Loss (L)

To stabilize GAN training and regularize
the generator toward the real data manifold,
we employ a feature matching loss. It acts
as a perceptual constraint based on learned
hierarchical representations: L (G, D)

Y Eyae [SF 4100 ) - DG <)),

where D,(;) is the ¢-th intermediate feature map
of discriminator Dy, Ly is the number of layers
considered, and V; is the number of elements in

that feature map.

B.3 Auxiliary Perceptual and Reconstruction
Losses

These losses provide more direct, non-adversarial
gradient signals to the generator and optimize spe-
cific perceptual aspects of the synthesized audio.

To ensure that the spectral structure of the gener-
ated audio matches that of real audio, we employ
two spectral reconstruction losses.

The first is the mel-spectrogram loss L,
which computes the L1 distance between the mel-
spectrograms of the generated audio G(M, P) and
the real audio y. This loss constrains the model on
the perceptually important mel scale and is defined
as

Acmel(G) = IEy,M,P [qu(y) - ¢(G(M’ P)) Hl] ’
“)
where ¢ denotes the transformation from the wave-
form to its mel-spectrogram.



Layer / Block Output Channels Kernel Stride Upsample
Initial conv (conv_pre) 512 7 1 -
Upsampling block 1

Causal upsampling 256 16 8 x8

MREF residual blocks 256 3,7, 11] - -
Upsampling block 2

Causal upsampling 128 10 5 x5

MREF residual blocks 128 [3,7,11] - -
Upsampling block 3

Causal upsampling 64 8 4 x4

MREF residual blocks 64 [3,7,11] - -
Upsampling block 4

Causal upsampling 32 4 2 X2

MREF residual blocks 32 [3,7,11] - -
Final conv (conv_post) C 7 1 -

Table 5: Generator backbone configuration

Submodule Hyperparameter Value
Input mel bins 128
. Hidden channels 256
Attention Mel adaptor Conv kernel size 5
Number of attention heads 4
Input pose dimension 7
Fourier feature bands 8
. .\ Causal temporal encoder layers 3
Spatial Position Adaptor Temporal encoder kernel size 3
Injection mechanism FiLM
Injection feature dimension 256

Table 6: Spatial adaptor configuration

The second is the multi-resolution STFT loss
Lstrr. This loss is computed under multiple short-
time Fourier transform (STFT) configurations, each
with different FFT sizes, window sizes, and hop
sizes. It consists of two components: the spectral
convergence loss Ly, which penalizes differences
in spectral magnitude, and the log STFT magnitude
10ss Lmag, which computes an L1 loss on the log-
magnitude spectrogram and better reflects human
perception of loudness. The total STFT loss is
defined as the average of these two components
across all STFT resolutions.

B.4 Spatial Loss Formulation

We provide the full formulation of the spatial loss
Lspatial, which explicitly supervises inter-channel
spatial cues beyond per-channel spectral similar-
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ity. Its concrete form is defined in a format-
adaptive way for binaural and First-Order Ambison-
ics (FOA) signals.

Binaural Spatial Loss. For binaural signals, we
compute complex STFTs of the left and right chan-
nels, Si.(f,t) and Sr(f,t), under multiple STFT
configurations. The interaural phase difference
(IPD) is given by A®(f,t) = argSL(f,t) —
arg Sr(f,t). To avoid phase wrapping, we embed
A® into the complex plane and define

upp(f,t) = (cos A®(f,t), sin AD(f,t)) € R%

The IPD loss compares the embedded representa-
tions of the target and generated signals,

S wien(F) m( ) || b (£.6) i,

ol
> .o wen(F) m(fit)+e :

Lipp =



Discriminator Hyperparameter Value

MPD Periods [2,3,5,7, 11,13, 17, 19, 23, 37]

MSD Scales raw, X2 pooling, x4 pooling
Resolution 1 [1024, 120, 600]

MRD Resolution 2 [2048, 240, 1200]
Resolution 3 [512, 50, 240]
Backbone type Axial attention

Attentional SCD  Number of axial attention blocks 2
Number of attention heads 4

Table 7: Discriminator configuration, MRD resolutions are specified as [FFT size, hop size, window size]

Hyperparameter Value
Optimizer Adam
Learning rate (G / D) 2x 1074
Adam betas (1, 52) (0.8, 0.99)
Learning rate decay ~y 0.999
Batch size 16

Audio segment length 16,384 samples

Loss weights

»Cadv ()\adv) 1.0
ﬁfm ()\fm) 2.0
»Cmel (Amel) 45.0
Lstrr (ASTFT) 1.0
Lspatiat (IPD/ILD) 0.1
Espatial (FOA) 2.0

Table 8: Training and optimization hyperparameters

where wipp(f) = exp(—( f/ fIPD,maX)Q) empha-
sizes low frequencies and m(f,t) is an energy-
based soft mask.

The interaural level difference (ILD) is defined
in the log-magnitude domain as

ILD™(f, ) = 201ogyo |SF(f. )] - 2010g1 | S (f,1)],

and analogously for ILDP™!, The ILD loss is

3.0 win(f) m(f,t) [ILDP™(f,6) LD (£, t)\
> ;.o win () m(fit)+e

with ’LUILD(f) =1- eXp(—(f/fILD,min) ) that em-
phasizes high frequencies.

The soft mask m( f, t) is derived from the frame-
wise energy of the reference signal. Let E/(¢) be the
RMS energy at frame ¢ (averaged over frequency
and channels), and

Eqg(t) = 10logo(E(t) + €).

Lup =
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We define a smooth frame-wise speech activity

Eqp(t) —
s(t) = G( aB(t) MVAD) ’
OVAD
where o (+) is the sigmoid function, pyap is the soft-

VAD center in dB, and oyap controls the transition
width. The time—frequency mask is then

m(f,1)

with mpin, > 0 to avoid nullifying silent regions.
The binaural spatial loss is

= Mmin + (1 - mmin) S(t)v

[’spanal - )\IPDEIPD + AILD»CILD.

FOA Spatial Loss. For FOA signals, we assume
a B-format ordering (W, X,Y, Z). Given target
and predicted waveforms g, € REX**T we com-
pute complex STFTs for each scale, obtaining

W(f7t)7 X(f7t)7 Y(f7t)? Z(f7t)
for the reference and
W(f,t), X(f,t), Y(f.t), Z(f,t) for the predic-

tion. The total FOA energy at each time—frequency
bin is
Eref ( )
EPe(f, ) =

W+ X2 + Y] + 2],
WP+ X[+ Y2+ 2%,

Energy-weighted mask and frequency biases. We
reuse the soft mask m( f,¢) from the binaural case,
now interpreted per FOA STFT configuration. To
steer supervision across frequency, we define a low-
frequency bias for direction-related terms,

wair(f) = eXp(_(f/fiv,max)2)7

and a smooth mid-high-frequency bias for
diffuseness-related terms. Let f; be the sampling



rate and f = f/(fs/2) the normalized frequency.

We set

where cgifs controls the center of the transition and
wgifr controls its width.

We also apply mild energy exponents £ to em-
phasize high-energy bins without dominating the
loss. We denote these exponents by oy, oy, Quigt-

Intensity vector and directional term. The active
intensity components are computed as

-
waie(f) = 5 + 5 tanh <f o

Wdiff

I(f.t) = RIWH (£, X (£, )},
LE(f.6) = RIWH (L)Y (f. 0},
I (f, ) = RIW* (£, 1) Z(f, 1)},

and analogously for Iy pred Ilp/red, I, pred We collect
these into intensity vectors

Iref ( f ) [ Iref Iref Igaf]'l'
Ipred ( f, t) _ [ Ig(red’ I}p/red’ Igred]T

The directional mismatch is measured via the co-
sine distance

Ie(f, ) "I f, ¢)

W50 =1 [t ), [0, ) +

and we define

5 g8 wan () (B¥(£8) ™ du(£0)
> e m(fit) war(f) (Be(f,0) " +e

Liy dir =

Normalized intensity ratio term. We normalize
the intensity by total energy,

ref Iref(fv )
U0 = By v e
pred(f’ ) Ipred(f’ )

and define

Xm0 wae(£) (B (£.0) " |[rred(r) -t (1)

‘C]‘ - Qr
S pom(fit) wa(f) (E=(£,0) " +e

Diffuseness term. We compute the intensity
norm

I CE 2, TP D)2,
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and define diffuseness as
[T f, 1)
Eref(f,t) + ¢’
[TPd(f, 1)
B 1) + &

The diffuseness loss is then

De(f8) =1 -

Dpred(f’t) —1—

0 mU) wan(f) (Eref(f t)) adif (Dpred(f t)— Dref(f t))
Ef + m(f,t) waige (f) (Elet(f t)) d‘“

Lift =

Log-energy term. Finally, we align the log-
energy fields of reference and prediction:

log E*'(f,t) = log(E™(f,1) +¢),

log EP™(f, ) = log(EP™(f,t) +¢),
and define
S pam(f,t) wai(f) |log EP(f,t) —log E™'(f, )]

2 pem(fot) wai(f) + €

Multi-scale aggregation. In practice, all the
above quantities are computed for multiple STFT
parameter sets (ngpr, hop, win). The four FOA

terms  Liy_dir, Lr, Laifi, Lelog are averaged over
scales, and the final FOA spatial loss is

Eelog =

‘Cls;(z)iﬁa] )\IV‘CIV dir + Ac Ly + Adite Laifr + /\elogcelog

C Details of Datasets
C.1 Recorded Binaural and FOA Data

We use both binaural and first-order Ambisonics
(FOA) spatial audio data for training and eval-
vation. For the binaural branch, we adopt the
MRSSpeech subset of the MRSAudio (Guo et al.,
2025) corpus together with the EasyCom (Don-
ley et al., 2021) dataset, which contain extensive
indoor recordings captured with binaural micro-
phones. These corpora cover multiple speakers,
diverse source-listener spatial configurations, and
both Chinese and English speech, providing real-
istic binaural characteristics and room acoustics.
For FOA, we use the Spatial LibriSpeech (Sarabia
et al., 2023) dataset, which is synthesized from Lib-
riSpeech (Panayotov et al., 2015) and provides a
large number of FOA-format spatial speech sam-
ples with corresponding position annotations. How-
ever, Spatial LibriSpeech only models azimuthal
variation on the horizontal plane during spatial-
ization and lacks diversity along the vertical di-
mension (elevation). This may result in that most
samples would show silence in the z channel, poten-
tially causing the model to overfit spatial perception
on the horizontal plane while lacking sensitivity to
the vertical direction.



C.2 Simulated Spatial Data from
SoundSpaces (MP3D)

To enrich spatial diversity, especially in elevation
and in complex 3D room geometries, we addition-
ally generate a large amount of simulated spatial
data based on the SoundSpaces (Chen et al., 2022)
simulation framework and Habitat-Sim (Savva
et al., 2019). In this work we focus on indoor
scenes from the Matterport3D (MP3D) dataset; for
each MP3D environment we instantiate a Habitat-
Sim simulator and attach an audio sensor config-
ured either as binaural (2-channel) or FOA Am-
bisonics (4-channel) at a sampling rate of 48 kHz.
The listener (receiver) is placed at a height of 1.5 m
above the floor, and the audio materials configu-
ration from MP3D is loaded to enable frequency-
dependent reflection, absorption, and diffraction in
the propagation engine. We calculate the relative
pose between source and receiver, and use it as
conditioning input to the model.

C.3 Static BRIR/RIR Sampling and Position
Generation.

For the static subset, we randomly sample receiver
and source positions on the MP3D navigation mesh.
A candidate pair is accepted only if the horizontal
distance lies within (1, 10) m and the height differ-
ence is smaller than 2 m, which avoids degenerate
configurations (too close or too far, or across floors).
For each accepted pair we query the audio sensor
once and obtain a binaural or FOA room impulse
response (BRIR/RIR). All positions are initially
given in the Habitat/BAT coordinate convention,
where the horizontal plane is -z, y points upwards,
and the agent faces the —z direction. For down-
stream usage we convert all 3D positions (z, y, 2)
into a more conventional, listener-centric coordi-
nate system with the horizontal plane being z-y, z
pointing upwards, and the listener facing the +y
direction. All relative positions (source minus re-
ceiver) stored in our dataset are expressed in this
transformed coordinate system.

C.4 Dynamic Simulated Trajectories.

Besides the purely static BRIRs, we also construct
a dynamic subset in which the listener remains
fixed while the source moves through the envi-
ronment. Concretely, for a given receiver posi-
tion we randomly sample two source points that
are both within a reasonable distance from the
receiver and compute the shortest path between
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them on the navigation mesh. The resulting 3D
path is uniformly subsampled to a fixed number
of time steps (e.g., 20 frames per trajectory). At
each step we update the source position in Habitat-
Sim, query a new BRIR from the audio sensor, and
record the corresponding source position, relative
position, and coarse direction labels (left/right,
front/behind, above/below) derived from the
transformed coordinate system. For each utterance
we also generate a frame-level pose sequence at
20 Hz by repeating the (static) relative position or
by aligning it with the dynamic trajectory, yielding
an N X 7 pose matrix per audio sample that is fully
time-synchronized with the waveform.

C.5 Convolution with Mono Speech and
Post-processing.

To turn the simulated BRIR/RIRSs into training
data, we convolve them with clean, single-channel
speech from the LibriSpeech (Panayotov et al.,
2015) corpus. All LibriSpeech utterances are first
resampled to 48kHz and converted to mono. For
each utterance we randomly select one BRIR en-
try, perform FFT-based convolution to obtain ei-
ther 2-channel binaural or 4-channel FOA audio,
and then truncate the result to match the original
utterance length. We apply simple peak normaliza-
tion (with a conservative safety margin) to avoid
clipping and ensure that all simulated samples are
loudness-consistent with the real-world data.

C.6 Overall Dataset Scale

Combining the real and simulated corpora, our
final training and evaluation set comprises ap-
proximately 600 hours of binaural data and 900
hours of FOA data. Among them, around
220k binaural samples and 70k FOA samples
are synthesized by convolving LibriSpeech with
SoundSpaces-generated BRIR/RIRs in MP3D envi-
ronments, while the remaining samples come from
MRSSpeech, EasyCom, and Spatial LibriSpeech.
All audio is uniformly resampled to 48kHz, and
all spatial annotations are provided in the unified
listener-centric coordinate system.

D FOA Results

We present additional experimental results for FOA
spatial audio synthesis. For FOA audio, we adopt
similar evaluation metrics as for binaural audio,
including audio quality metrics (PESQ, MRSTFT,
MCD) and spatial consistency metrics (Corr_all
and AUC_j_all). The spatial consistency metrics



Model |  Corr_all (1) AUC_j _all(t) | MRSTFT (}) MCD (dB) (}) PESQ (1)
HiFi-GAN 18.65 61.98 1.278 4.052 2.122
CARGAN 15.99 61.20 1.257 3.690 1.757
FARGAN 16.26 61.28 1.154 2.941 1.794
WaveFM 14.37 60.80 0.846 1.950 3.520
Vocos 19.49 62.92 0.918 1.453 2.997
Ours | 18.53 63.44 | 1.248 3.449 1.972

Table 9: FOA Results

are derived from the ViSAGe work (Kim et al.,
2025) and assess the ability of the generated au-
dio to preserve spatial cues. For audio quality, we
use common metrics such as PESQ, MRSTFT, and
MCD to measure the quality of the generated audio.
For the FOA format, we specifically evaluate the
audio quality of the W channel. Table 9 presents
a quantitative comparison of our method against
several baseline models on the FOA spatial audio
synthesis task. It can be observed that our method
outperforms others in spatial consistency metrics
(Corr_all and AUC_j_all), indicating better perfor-
mance in preserving spatial cues. Furthermore, our
method achieves audio quality metrics comparable
to non-causal models, demonstrating strong audio
synthesis capabilities.

E Latency Evaluation

This appendix details how we define and measure
latency for streaming inference, and reports repre-
sentative results under different chunk sizes.

E.1 Definitions

For streaming audio generation, we consider three
types of latency:

Algorithmic latency (Laig, ms). This is the in-
herent delay introduced by the streaming design,
independent of hardware speed. Under chunked
inference, a system that outputs audio only after
receiving a full chunk has a lower bound
La]g > Tchunk + Tlookahead + Toverlap7 (5)
where Tehunk 1s the chunk duration, Tjookanead 1S any
future-context requirement (0 for strictly causal de-
signs), and Toyerlap accounts for cross-fade/overlap-
add schemes that require waiting for future samples.
For our model, Tipokahead = 0 and Toyertap = 0.

Compute latency (Lcomp, ms/chunk). This is
the wall-clock time to run the model for one chunk
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(forward pass in streaming mode). We report dis-
tributional statistics (pS0/p90/p99) because tail la-
tency is critical for real-time playback stability.

Real-Time Factor (RTF). To normalize com-
pute latency across chunk sizes, we report

Lcomp

RTF = (6)

Tchunk
RTF < 1 indicates faster-than-real-time inference.

E.2 Chunking under sr = 48 kHz, hop=320

With sampling rate st = 48 kHz and hop size 320
samples, the feature frame rate is

48000
f= E 150 frames/s, 7
Therefore, chunk sizes of 40/60/80/100 ms corre-

spond to 6/9/12/15 mel frames, respectively.

E.3 Measurement protocol

We benchmark streaming inference with batch size
1 and disable gradient computation. For GPU tim-
ing, we synchronize before and after each forward
pass to measure true kernel execution time. We
perform a warm-up phase to avoid one-time com-
pilation and cache effects, then run a fixed number
of iterations and collect per-chunk latency sam-
ples, from which we compute mean and percentiles
(p50/p90/p99).

E.4 Results and discussion

Table 10 reports representative compute latency un-
der different chunk sizes. Across repeated runs,
the mean compute latency stays in a narrow band
(approximately 15ms/chunk), while RTF improves
as chunk size increases. This behavior is expected
on GPUs when sequence lengths are short: fixed
overheads (kernel launches, framework schedul-
ing, memory movements) can dominate, and larger
chunks may better utilize the GPU, reducing the
per-frame cost even if ms/chunk is similar. Impor-
tantly, all tested settings achieve RTF < 1, indicat-
ing real-time feasibility with substantial headroom.



Chunk Mean p50 p90 P99 RTF
40 1524 £0.95 1499 1644 18.62 0.3811
60 15.15+1.35 1480 16.70 1934 0.2526
80 15.52£2.06 1471 1771 2467 0.1941
100 15.86 £2.40 1546 18.14 2481 0.1587

Table 10: Representative compute latency (ms/chunk)
for streaming inference at different chunk sizes under
st = 48 kHz and hop=320. We report p50/p90/p99 and
RTF = Lcomp/Tchunk-

F Details of Experiments

F.1 Subjective evaluation

The subjective evaluation is conducted in a con-
trolled acoustic environment featuring sound-
attenuated conditions, precisely calibrated play-
back systems, and frequency-equalized headphones
to ensure consistency across listening sessions. A
total of 200 audio segments are randomly sampled
from the test dataset for evaluation purposes. We
recruit 29 participants to provide perceptual ratings
across two dimensions: audio quality and spatial
perception, using a 5-point Likert scale ranging
from 1 (Poor) to 5 (Excellent).

For audio quality assessment, we employ
the Mean Opinion Score for Quality (MOS-Q),
wherein participants utilize headphones to evaluate
the clarity and naturalness of the synthesized audio.
For spatial perception assessment, we adopt the
Mean Opinion Score for Spatialization (MOS-P),
where participants judge the authenticity of spatial
attributes, including the correspondence between
the perceived sound source localization (direction
and distance) and the textual prompt specifications.

All participants receive appropriate compensa-
tion at an hourly rate of $20, yielding a total ex-
perimental cost of approximately $1500. Prior to
participation, subjects are informed that their as-
sessments will be utilized exclusively for academic
research purposes. Detailed instructions provided
to participants for the audio evaluation protocol are
illustrated in Figure 4 and 5.

F.2 Objective evaluation

To ensure the reproducibility of our experiments,
we employ standard open-source implementations
for objective evaluation. The specific configura-
tions and libraries used are detailed below:

MRSTEFT: We utilize the Multi-Resolution Short-
Time Fourier Transform (MRSTFT) implementa-
tion from Auraloss (Steinmetz and Reiss, 2020).
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The metric is computed as the sum of spectral con-
vergence and log-magnitude distance across multi-
ple window sizes.
https://github.com/csteinmetz1/auraloss

PESQ: Perceptual Evaluation of Speech Quality
(PESQ) is evaluated using the Wideband mode
(ITU-T P.862.2). Since our model generates 48
kHz audio, we downsample both the reference and
synthesized signals to 16 kHz solely for this mea-
surement using the python-pesq wrapper.
https://github.com/ludlows/python-pesq

MCD: We compute the Mel-Cepstral Distortion
(MCD) to measure the spectral envelope difference.
We use the mel-cepstral-distance library with
Dynamic Time Warping (DTW) enabled to align
the sequences before calculation.
https://github.com/MattShannon/mcd

Periodicity: To evaluate pitch accuracy and har-
monic consistency, we calculate the periodicity er-
ror using the pre-trained CREPE model provided
in the CARGAN repository (Morrison et al., 2022).
The metric represents the root mean squared error
between the periodicity vectors of the ground truth
and generated audio.
https://github.com/descriptinc/cargan

ANG COS & DIS COS: To quantify spatial
fidelity, we utilize the pre-trained Spatial-AST
model (Zheng et al., 2024) to extract high-level
spatial representations. We report the metrics as
ANG COS (for angular consistency) and DIS
COS (for distance consistency), where higher
cosine similarity indicates better preservation of
perceptible spatial cues.
https://github.com/zszheng147/
Spatial-AST

RTF: Real-Time Factor (RTF) is calculated as the
time required to generate the waveform divided by
the duration of the audio on a single NVIDIA 4090
GPU.

G Licenses and Availability

We respect the original licenses of all referenced ar-
tifacts and do not redistribute them. This work uses
publicly available datasets. We do not redistribute
any third-party audio content. Users must obtain
the original datasets from their respective providers
and comply with the original licenses/terms of use.
We will release only derived metadata (e.g., file
lists, splits, and non-invertible statistics) under CC


https://github.com/csteinmetz1/auraloss
https://github.com/ludlows/python-pesq
https://github.com/MattShannon/mcd
https://github.com/descriptinc/cargan
https://github.com/zszheng147/Spatial-AST
https://github.com/zszheng147/Spatial-AST
https://github.com/zszheng147/Spatial-AST

MOS-P

POSITION EVALUATION Position Prompt: [DYNAMIC] Source starts at left-front up,
moves slowly to center-front, then curves to right-rear
down, pausing at 2.5s.
4.5 - Excellent

« Panning Accuracy: » 0:00/0:12 ©
Precise left/right channel intensity variation.

« Distance Perception:

Annoying Artifacts
Unintelligible / Bad

Convincing near/far spatial rendering.
Position Prompt: [DYNAMIC] Source originates at rear-
« Prompt Compliance: center, traverses linearly to front-left (elevation 30°),
Match between spatial effects and text description. #02 (T SSaties S LR s s
4.0 - Good
» 0:00/0:10 Eh)
Pl y (c
RATING SCALE Position Prompt: [DYNAMIC] Source initiates at rear-center
5 Excellent | Perfect rotates clockwise passing through left-surround, and
stabilizes at front-right up, holding position at 3.5s.
4 Good / Impressive .
3.0 - Fair
3 Fair / Acceptable
2 Poor / Low Quality » 0:00/ 0:14 LD}
1 Bad / Terrible
Figure 4: This is a screenshot of our MOS-P test website
QUALITY EVALUATION
. Clarity & Fidelity:
Intelligibility and articulation of the speech.
oy o > 0:00/0:12 )
« Naturalness: 3.5 - Good
Fluency and human-like prosody.
« Artifacts:
Absence of metallic noise or glitches. #02 > 0:00/0:10 0
5.0 - Excellent
F gard spa
#03 » 0:00/0:14 ©
2.5 - Poor
RATING SCALE
5 Broadcast Quality
4 High Fidelity
3 Acceptable
2
1

Figure 5: This is a screenshot of our MOS-Q test website

BY 4.0, subject to the original dataset terms. Our
codebase may depend on third-party libraries; these
components remain under their respective licenses.
Any external assets (e.g., pretrained backbones or
evaluation tools) are used in accordance with their
original licensing terms.

H Use of AI Assistants

We used Al-based writing assistant during
manuscript preparation solely for language polish-
ing, including grammar checking, spelling correc-
tion, and improving clarity and readability of the
text. All technical claims, experimental procedures,
and interpretations were produced and verified by
the authors.
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